Author
Listed:
- Souhila Kaci
- Leendert Torre
Abstract
As systems dealing with preferences become more sophisticated, it becomes essential to deal with various kinds of preference statements and their interaction. We introduce a non-monotonic logic distinguishing sixteen kinds of preferences, ranging from strict to loose and from careful to opportunistic, and two kinds of ways to deal with uncertainty, either optimistically or pessimistically. The classification of the various kinds of preferences is inspired by a hypothetical agent comparing the two alternatives of a preference statement. The optimistic and pessimistic way of dealing with uncertainty correspond on the one hand to considering either the best or the worst states in the comparison of the two alternatives of a preference statement, and on the other hand to the calculation of least or most specific “distinguished” preference orders from a set of preference statements. We show that each way to calculate distinguished preference orders is compatible with eight kinds of preferences, in the sense that it calculates a unique distinguished preference order for a set of such preference statements, and we provide efficient algorithms that calculate these unique distinguished preference orders. In general, optimistic kinds of preferences are compatible with optimism in calculating distinguished preference orders, and pessimistic kinds of preferences are compatible with pessimism in calculating distinguished preference orders. However, these two sets of eight kinds of preferences are not exclusive, such that some kinds of preferences can be used in both ways to calculate distinguished preference orders, and other kinds of preferences cannot be used in either of them. We also consider the merging of optimistically and pessimistically constructed distinguished preferences orders. Copyright Springer Science+Business Media, LLC 2008
Suggested Citation
Souhila Kaci & Leendert Torre, 2008.
"Reasoning with various kinds of preferences: logic, non-monotonicity, and algorithms,"
Annals of Operations Research, Springer, vol. 163(1), pages 89-114, October.
Handle:
RePEc:spr:annopr:v:163:y:2008:i:1:p:89-114:10.1007/s10479-008-0331-4
DOI: 10.1007/s10479-008-0331-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:163:y:2008:i:1:p:89-114:10.1007/s10479-008-0331-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.