IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v159y2008i1p161-18110.1007-s10479-007-0276-z.html
   My bibliography  Save this article

Cyclic job shop scheduling problems with blocking

Author

Listed:
  • Peter Brucker
  • Thomas Kampmeyer

Abstract

A tabu search algorithm for a cyclic job shop problem with blocking is presented. Operations are blocking if they must stay on a machine after finishing when the next machine is occupied by another job. During this stay the machine is blocked for other jobs. For this problem traditional tabu search moves often lead to infeasible solutions. Recovering procedures are developed which construct nearby feasible solutions. Computational results are presented for the approach. Copyright Springer Science+Business Media, LLC 2008

Suggested Citation

  • Peter Brucker & Thomas Kampmeyer, 2008. "Cyclic job shop scheduling problems with blocking," Annals of Operations Research, Springer, vol. 159(1), pages 161-181, March.
  • Handle: RePEc:spr:annopr:v:159:y:2008:i:1:p:161-181:10.1007/s10479-007-0276-z
    DOI: 10.1007/s10479-007-0276-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-007-0276-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-007-0276-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    2. Hanen, Claire, 1994. "Study of a NP-hard cyclic scheduling problem: The recurrent job-shop," European Journal of Operational Research, Elsevier, vol. 72(1), pages 82-101, January.
    3. S. Thomas McCormick & Michael L. Pinedo & Scott Shenker & Barry Wolf, 1989. "Sequencing in an Assembly Line with Blocking to Minimize Cycle Time," Operations Research, INFORMS, vol. 37(6), pages 925-935, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
    2. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    3. Heinz Gröflin & Dinh Nguyen Pham & Reinhard Bürgy, 2011. "The flexible blocking job shop with transfer and set-up times," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 121-144, August.
    4. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    5. Zdeněk Hanzálek & Přemysl Šůcha, 2017. "Time symmetry of resource constrained project scheduling with general temporal constraints and take-give resources," Annals of Operations Research, Springer, vol. 248(1), pages 209-237, January.
    6. Xiang Li & Haoyue Fan & Jiaming Liu & Qifeng Xun, 2022. "Staff scheduling in blood collection problems," Annals of Operations Research, Springer, vol. 316(1), pages 365-400, September.
    7. Félix Quinton & Idir Hamaz & Laurent Houssin, 2020. "A mixed integer linear programming modelling for the flexible cyclic jobshop problem," Annals of Operations Research, Springer, vol. 285(1), pages 335-352, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    2. Munier, A., 1996. "The complexity of a cyclic scheduling problem with identical machines and precedence constraints," European Journal of Operational Research, Elsevier, vol. 91(3), pages 471-480, June.
    3. Smith, Kate & Palaniswami, M. & Krishnamoorthy, M., 1996. "Traditional heuristic versus Hopfield neural network approaches to a car sequencing problem," European Journal of Operational Research, Elsevier, vol. 93(2), pages 300-316, September.
    4. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    5. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    6. Herbon, Avi, 2020. "An approximated solution to the constrained integrated manufacturer-buyer supply problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. Kats, Vladimir & Lei, Lei & Levner, Eugene, 2008. "Minimizing the cycle time of multiple-product processing networks with a fixed operation sequence, setups, and time-window constraints," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1196-1211, June.
    8. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    9. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2021. "Risk of delay evaluation in real-time train scheduling with uncertain dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Van Thielen, Sofie & Corman, Francesco & Vansteenwegen, Pieter, 2018. "Considering a dynamic impact zone for real-time railway traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 39-59.
    11. Idir Hamaz & Laurent Houssin & Sonia Cafieri, 2018. "A robust basic cyclic scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 291-313, September.
    12. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    13. Andrea D’Ariano & Marco Pranzo, 2009. "An Advanced Real-Time Train Dispatching System for Minimizing the Propagation of Delays in a Dispatching Area Under Severe Disturbances," Networks and Spatial Economics, Springer, vol. 9(1), pages 63-84, March.
    14. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    15. Bolat, Ahmet, 1997. "Sequencing jobs for an automated manufacturing module with buffer," European Journal of Operational Research, Elsevier, vol. 96(3), pages 622-635, February.
    16. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    17. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    18. Shi Qiang Liu & Erhan Kozan, 2011. "Scheduling Trains with Priorities: A No-Wait Blocking Parallel-Machine Job-Shop Scheduling Model," Transportation Science, INFORMS, vol. 45(2), pages 175-198, May.
    19. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    20. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:159:y:2008:i:1:p:161-181:10.1007/s10479-007-0276-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.