IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v120y2003i1p117-13210.1023-a1023326413273.html
   My bibliography  Save this article

Using GRASP to Solve the Unit Commitment Problem

Author

Listed:
  • Ana Viana
  • Jorge de Sousa
  • Manuel Matos

Abstract

In this paper, the Unit Commitment (UC) problem is presented and solved, following an innovative approach based on a metaheuristic procedure. The problem consists on deciding which electric generators must be committed, over a given planning horizon, and on defining the production levels that are required for each generator, so that load and spinning reserve requirements are verified, at minimum production costs. Due to its complexity, exact methods proved to be inefficient when real size problems were considered. Therefore, heuristic methods have for long been developed and, in recent years, metaheuristics have also been applied with some success to the problem. Methods like Simulated Annealing, Tabu Search and Evolutionary Programming can be found in several papers, presenting results that are sufficiently interesting to justify further research in the area. In this paper, a resolution framework based on GRASP – Greedy Randomized Adaptive Search Procedure – is presented. To obtain a general optimisation tool, capable of solving different problem variants and of including several objectives, the operations involved in the optimisation process do not consider any particular characteristics of the classical UC problem. Even so, when applied to instances with very particular structures, the computational results show the potential of this approach. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Ana Viana & Jorge de Sousa & Manuel Matos, 2003. "Using GRASP to Solve the Unit Commitment Problem," Annals of Operations Research, Springer, vol. 120(1), pages 117-132, April.
  • Handle: RePEc:spr:annopr:v:120:y:2003:i:1:p:117-132:10.1023/a:1023326413273
    DOI: 10.1023/A:1023326413273
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1023326413273
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1023326413273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aml Sayed & Mohamed Ebeed & Ziad M. Ali & Adel Bedair Abdel-Rahman & Mahrous Ahmed & Shady H. E. Abdel Aleem & Adel El-Shahat & Mahmoud Rihan, 2021. "A Hybrid Optimization Algorithm for Solving of the Unit Commitment Problem Considering Uncertainty of the Load Demand," Energies, MDPI, vol. 14(23), pages 1-21, November.
    2. Sirote Khunkitti & Neville R. Watson & Rongrit Chatthaworn & Suttichai Premrudeepreechacharn & Apirat Siritaratiwat, 2019. "An Improved DA-PSO Optimization Approach for Unit Commitment Problem," Energies, MDPI, vol. 12(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:120:y:2003:i:1:p:117-132:10.1023/a:1023326413273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.