IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v116y2002i1p91-11210.1023-a1021320028145.html
   My bibliography  Save this article

Convex Normalizations in Lift-and-Project Methods for 0–1 Programming

Author

Listed:
  • Pablo Rey
  • Claudia Sagastizábal

Abstract

Branch-and-Cut algorithms for general 0–1 mixed integer programs can be successfully implemented by using Lift-and-Project (L&P) methods to generate cuts. L&P cuts are drawn from a cone of valid inequalities that is unbounded and, thus, needs to be truncated, or “normalized”. We consider general normalizations defined by arbitrary closed convex sets and derive dual problems for generating L&P cuts. This unified theoretical framework generalizes and covers a wide group of already known normalizations. We also give conditions for proving finite convergence of the cutting plane procedure that results from using such general L&P cuts. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • Pablo Rey & Claudia Sagastizábal, 2002. "Convex Normalizations in Lift-and-Project Methods for 0–1 Programming," Annals of Operations Research, Springer, vol. 116(1), pages 91-112, October.
  • Handle: RePEc:spr:annopr:v:116:y:2002:i:1:p:91-112:10.1023/a:1021320028145
    DOI: 10.1023/A:1021320028145
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1021320028145
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1021320028145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:116:y:2002:i:1:p:91-112:10.1023/a:1021320028145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.