Author
Listed:
- James George
- Charles ReVelle
- John Current
Abstract
A number of network design problems can be built on the following premise: Given a tree network, T, containing node set, V, identify a single subtree, t, containing nodes, v, so that the subtree is located optimally with respect to the remaining, unconnected nodes {V−v}. Distances between unconnected nodes and nodes in the subtree t can be defined on travel paths that are restricted to lie in the larger tree T (the travel-restricted case), or can be defined on paths in an auxiliary complete graph G (the travel-unrestricted case). This paper presents the Maximum Utilization Subtree Problem (MUSP), a bicriterion problem that trades off the cost of a subtree, t, against the utilization of the subtree by the sum of the populations at nodes connected to the subtree, plus the distance-attenuated population that must travel to the subtree from unconnected nodes. The restricted and unrestricted cases are formulated as a two objective integer programs where the objectives are to maximize utilization of the subtree and minimize the cost of the subtree. The programs are tested using linear programming and branch and bound to resolve fractions. The types of problems presented in this paper have been characterized in the existing literature as “structure location” or “extensive facility location” problems. This paper adds two significant contributions to the general body of location literature. First, it draws explicit attention to the travel-restricted and travel-unrestricted cases, which may also be called “limited-access” and “general-access” cases, respectively. Second, the distance-attenuated demands represent a new objective function concept that does not appear in the location literature. Copyright Kluwer Academic Publishers 2002
Suggested Citation
James George & Charles ReVelle & John Current, 2002.
"The Maximum Utilization Subtree Problem,"
Annals of Operations Research, Springer, vol. 110(1), pages 133-151, February.
Handle:
RePEc:spr:annopr:v:110:y:2002:i:1:p:133-151:10.1023/a:1020719718071
DOI: 10.1023/A:1020719718071
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:110:y:2002:i:1:p:133-151:10.1023/a:1020719718071. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.