IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v106y2001i1p263-28610.1023-a1014569927266.html
   My bibliography  Save this article

A Comparison of Optimal Methods for Local Access Uncapacitated Network Design

Author

Listed:
  • C.D. Randazzo
  • H.P.L. Luna

Abstract

We compare some optimal methods addressed to a problem of local access network design. We see this problem arising in telecommunication as a flow extension of the Steiner problem in directed graphs, thus including as particular cases some alternative approaches based on the spanning tree problem. We work with two equivalent flow formulations for the problem, the first referring to a single commodity and the second being a multicommodity flow model. The objective in both cases is the cost minimization of the sum of the fixed (structural) and variable (operational) costs of all the arcs composing an arborescence that links the origin node (switching center) to every demand node. The weak single commodity flow formulation is solved by a branch-and-bound strategy that applies Lagrangian relaxation for computing the bounds. The strong multicommodity flow model is solved by a branch-and-cut algorithm and by Benders decomposition. The use of a linear programming solver to address both the single commodity and the multicommodity models has also been investigated. Our experience suggests that a certain number of these modeling and solution strategies can be applied to the frequently occurring problems where basic optimal solutions to the linear program are automatically integral, so it also solves the combinatorial optimization problem right away. On the other hand, our main conclusion is that a well tailored Benders partitioning approach emerges as a robust method to cope with that fabricated cases where the linear programming relaxation exhibits a gap between the continuous and the integral optimal values. Copyright Kluwer Academic Publishers 2001

Suggested Citation

  • C.D. Randazzo & H.P.L. Luna, 2001. "A Comparison of Optimal Methods for Local Access Uncapacitated Network Design," Annals of Operations Research, Springer, vol. 106(1), pages 263-286, September.
  • Handle: RePEc:spr:annopr:v:106:y:2001:i:1:p:263-286:10.1023/a:1014569927266
    DOI: 10.1023/A:1014569927266
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1014569927266
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1014569927266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morton O’Kelly & Henrique Luna & Ricardo Camargo & Gilberto Miranda, 2015. "Hub Location Problems with Price Sensitive Demands," Networks and Spatial Economics, Springer, vol. 15(4), pages 917-945, December.
    2. Chardy, M. & Costa, M.-C. & Faye, A. & Trampont, M., 2012. "Optimizing splitter and fiber location in a multilevel optical FTTH network," European Journal of Operational Research, Elsevier, vol. 222(3), pages 430-440.
    3. Raidl, Günther R., 2015. "Decomposition based hybrid metaheuristics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 66-76.
    4. Zetina, Carlos Armando & Contreras, Ivan & Fernández, Elena & Luna-Mota, Carlos, 2019. "Solving the optimum communication spanning tree problem," European Journal of Operational Research, Elsevier, vol. 273(1), pages 108-117.
    5. E A Cabral & E Erkut & G Laporte & R A Patterson, 2008. "Wide area telecommunication network design: application to the Alberta SuperNet," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1460-1470, November.
    6. Yazar, Başak & Arslan, Okan & Karaşan, Oya Ekin & Kara, Bahar Y., 2016. "Fiber optical network design problems: A case for Turkey," Omega, Elsevier, vol. 63(C), pages 23-40.
    7. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:106:y:2001:i:1:p:263-286:10.1023/a:1014569927266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.