IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v96y2012i3p435-450.html
   My bibliography  Save this article

Numerical solution of optimal allocation problems in stratified sampling under box constraints

Author

Listed:
  • Ralf Münnich
  • Ekkehard Sachs
  • Matthias Wagner

Abstract

Modern sampling designs in survey statistics, in general, are constructed in order to optimize the accuracy of estimators such as totals, means and proportions. In stratified random sampling a variance minimal solution was introduced by Neyman and Tschuprov. However, practical constraints may lead to limitations of the domain of sampling fractions which have to be considered within the optimization process. Special attention on the complexity of numerical solutions has to be paid in cases with many strata or when the optimal allocation has to be applied repeatedly, such as in iterative solutions of stratification problems. The present article gives an overview of recent numerical algorithms which allow adequate inclusion of box constraints in the numerical optimization process. These box constraints may play an important role in statistical modeling. Furthermore, a new approach through a fixed point iteration with a finite termination property is presented. Copyright Springer-Verlag 2012

Suggested Citation

  • Ralf Münnich & Ekkehard Sachs & Matthias Wagner, 2012. "Numerical solution of optimal allocation problems in stratified sampling under box constraints," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 435-450, July.
  • Handle: RePEc:spr:alstar:v:96:y:2012:i:3:p:435-450
    DOI: 10.1007/s10182-011-0176-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-011-0176-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10182-011-0176-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horst Stenger & Siegfried Gabler, 2005. "Combining random sampling and census strategies - Justification of inclusion probabilities equal to 1," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(2), pages 137-156, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    2. Friedrich, Ulf & Münnich, Ralf & de Vries, Sven & Wagner, Matthias, 2015. "Fast integer-valued algorithms for optimal allocations under constraints in stratified sampling," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 1-12.
    3. repec:csb:stintr:v:17:y:2016:i:1:p:25-40 is not listed on IDEAS
    4. M. G. M. Khan & Jacek Wesołowski, 2019. "Neyman-type sample allocation for domains-efficient estimation in multistage sampling," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 563-592, December.
    5. Ralf Münnich & Jan Pablo Burgard & Siegfried Gabler & Matthias Ganninger & Jan-Philipp Kolb, 2016. "Small Area Estimation In The German Census 2011," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 25-40, March.
    6. Allafi, Sabine & Lohn, Alexandra & Nölting, Christopher & Maier, Alexander, 2022. "Die neue Strukturstatistik im Handels- und Dienstleistungsbereich," WISTA – Wirtschaft und Statistik, Statistisches Bundesamt (Destatis), Wiesbaden, vol. 74(5), pages 22-31.
    7. Münnich Ralf & Burgard Jan Pablo & Gabler Siegfried & Ganninger Matthias & Kolb Jan-Philipp, 2016. "Small Area Estimation in the German Census 2011," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 25-40, March.
    8. Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich, Ulf & Münnich, Ralf & de Vries, Sven & Wagner, Matthias, 2015. "Fast integer-valued algorithms for optimal allocations under constraints in stratified sampling," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 1-12.
    2. Siegfried Gabler & Matthias Ganninger & Ralf Münnich, 2012. "Optimal allocation of the sample size to strata under box constraints," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 151-161, February.
    3. M. G. M. Khan & Jacek Wesołowski, 2019. "Neyman-type sample allocation for domains-efficient estimation in multistage sampling," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 563-592, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:96:y:2012:i:3:p:435-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.