IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v94y2010i4p353-366.html
   My bibliography  Save this article

Comparing and generating Latin Hypercube designs in Kriging models

Author

Listed:
  • Giovanni Pistone
  • Grazia Vicario

Abstract

No abstract is available for this item.

Suggested Citation

  • Giovanni Pistone & Grazia Vicario, 2010. "Comparing and generating Latin Hypercube designs in Kriging models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 353-366, December.
  • Handle: RePEc:spr:alstar:v:94:y:2010:i:4:p:353-366
    DOI: 10.1007/s10182-010-0142-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-010-0142-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10182-010-0142-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sigal Levy & David Steinberg, 2010. "Computer experiments: a review," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 311-324, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Petelet & Bertrand Iooss & Olivier Asserin & Alexandre Loredo, 2010. "Latin hypercube sampling with inequality constraints," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 325-339, December.
    2. Nuno Costa & Paulo Fontes, 2020. "Energy-Efficiency Assessment and Improvement—Experiments and Analysis Methods," Sustainability, MDPI, vol. 12(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Antony M. Overstall & David C. Woods, 2016. "Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 483-505, August.
    3. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    4. Sonja Kuhnt & David Steinberg, 2010. "Design and analysis of computer experiments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 307-309, December.
    5. Sidonie Lefebvre & Antoine Roblin & Suzanne Varet & GĂ©rard Durand, 2010. "Metamodeling of aircraft infrared signature dispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 405-422, December.
    6. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    7. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    8. Matthieu Petelet & Bertrand Iooss & Olivier Asserin & Alexandre Loredo, 2010. "Latin hypercube sampling with inequality constraints," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 325-339, December.
    9. Markus Pollak & Philipp Bekemeyer & Nicholas Lemke & Wilhelm Tegethoff & Juergen Koehler, 2023. "Analysis of Surrogate Models for Vapour Transport and Distribution in a Hollow Fibre Membrane Humidifier," Energies, MDPI, vol. 16(6), pages 1-23, March.
    10. Wu, Di & Zhang, Taoyuan & Zhang, Jiqiang & Lv, Hongyi & Yue, Chao & Fu, Mengze, 2024. "Sensitivity analysis and multiobjective optimization for rural house retrofitting considering construction and occupant behavior uncertainty: A case study of Jiaxian, China," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:94:y:2010:i:4:p:353-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.