IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v108y2024i2d10.1007_s10182-024-00492-4.html
   My bibliography  Save this article

Variational inference: uncertainty quantification in additive models

Author

Listed:
  • Jens Lichter

    (Chair of Statistics)

  • Paul F V Wiemann

    (Chair of Statistics
    University of Wisconsin-Madison, Department of Statistics)

  • Thomas Kneib

    (Chair of Statistics)

Abstract

Markov chain Monte Carlo (MCMC)-based simulation approaches are by far the most common method in Bayesian inference to access the posterior distribution. Recently, motivated by successes in machine learning, variational inference (VI) has gained in interest in statistics since it promises a computationally efficient alternative to MCMC enabling approximate access to the posterior. Classical approaches such as mean-field VI (MFVI), however, are based on the strong mean-field assumption for the approximate posterior where parameters or parameter blocks are assumed to be mutually independent. As a consequence, parameter uncertainties are often underestimated and alternatives such as semi-implicit VI (SIVI) have been suggested to avoid the mean-field assumption and to improve uncertainty estimates. SIVI uses a hierarchical construction of the variational parameters to restore parameter dependencies and relies on a highly flexible implicit mixing distribution whose probability density function is not analytic but samples can be taken via a stochastic procedure. With this paper, we investigate how different forms of VI perform in semiparametric additive regression models as one of the most important fields of application of Bayesian inference in statistics. A particular focus is on the ability of the rivalling approaches to quantify uncertainty, especially with correlated covariates that are likely to aggravate the difficulties of simplifying VI assumptions. Moreover, we propose a method, where we combine both advantages of MFVI and SIVI and compare its performance. The different VI approaches are studied in comparison with MCMC in simulations and an application to tree height models of douglas fir based on a large-scale forestry data set.

Suggested Citation

  • Jens Lichter & Paul F V Wiemann & Thomas Kneib, 2024. "Variational inference: uncertainty quantification in additive models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(2), pages 279-331, June.
  • Handle: RePEc:spr:alstar:v:108:y:2024:i:2:d:10.1007_s10182-024-00492-4
    DOI: 10.1007/s10182-024-00492-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-024-00492-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-024-00492-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:108:y:2024:i:2:d:10.1007_s10182-024-00492-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.