IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v105y2021i3d10.1007_s10182-021-00408-6.html
   My bibliography  Save this article

Bayesian random projection-based signal detection for Gaussian scale space random fields

Author

Listed:
  • Yasser Al Zaim

    (Shahid Beheshti University)

  • Mohammad Reza Faridrohani

    (Shahid Beheshti University)

Abstract

In the present paper, we are concerned with introducing a simple method for signal detection problem in one realization of a two-dimensional random field based on the one-dimensional random projection technique. Formally, we provide a Bayesian projection-based approach for signal detection in the two-dimensional Gaussian scale space random field, though it is applicable for higher dimensions. It will be shown by a series of simulation studies that our purposed method, controls the error rate in nominal level and has the high performance for signal detection, and this procedure completely distinguishes between the two hypotheses of “no signal” and the alternative. Also, we provide two applications of the proposed procedure, one from a real dataset of a two-dimensional random field of R-fMRI data of an autistic individual and the other with a two-dimensional random field of fMRI data.

Suggested Citation

  • Yasser Al Zaim & Mohammad Reza Faridrohani, 2021. "Bayesian random projection-based signal detection for Gaussian scale space random fields," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 503-532, September.
  • Handle: RePEc:spr:alstar:v:105:y:2021:i:3:d:10.1007_s10182-021-00408-6
    DOI: 10.1007/s10182-021-00408-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00408-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00408-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Escanciano, J. Carlos, 2006. "A Consistent Diagnostic Test For Regression Models Using Projections," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1030-1051, December.
    2. Hormuzd A. Katki, 2006. "Effect of Misreported Family History on Mendelian Mutation Prediction Models," Biometrics, The International Biometric Society, vol. 62(2), pages 478-487, June.
    3. Ricardo Fraiman & Leonardo Moreno & Sebastian Vallejo, 2017. "Some hypothesis tests based on random projection," Computational Statistics, Springer, vol. 32(3), pages 1165-1189, September.
    4. Shanshan Li & Ani Eloyan & Suresh Joel & Stewart Mostofsky & James Pekar & Susan Spear Bassett & Brian Caffo, 2012. "Analysis of Group ICA-Based Connectivity Measures from fMRI: Application to Alzheimer's Disease," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    2. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    3. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    4. repec:cte:werepe:we1138 is not listed on IDEAS
    5. Juan Carlos Escanciano & Kyungchul Song, 2007. "Asymptotically Optimal Tests for Single-Index Restrictions with a Focus on Average Partial Effects," PIER Working Paper Archive 07-005, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Andrea Vaona, 2008. "The sensitivity of nonparametric misspecification tests to disturbance autocorrelation," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0803, USI Università della Svizzera italiana.
    7. Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
    8. Wasel Shadat, 2011. "On the Nonparametric Tests of Univariate GARCH Regression Models," Economics Discussion Paper Series 1115, Economics, The University of Manchester.
    9. Conde-Amboage, Mercedes & Sánchez-Sellero, César & González-Manteiga, Wenceslao, 2015. "A lack-of-fit test for quantile regression models with high-dimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 128-138.
    10. Pascal Lavergne & Valentin Patilea, 2011. "One for All and All for One: Regression Checks With Many Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 41-52, January.
    11. Manuel Febrero-Bande & Pedro Galeano & Eduardo García-Portugués & Wenceslao González-Manteiga, 2024. "Testing for linearity in scalar-on-function regression with responses missing at random," Computational Statistics, Springer, vol. 39(6), pages 3405-3429, September.
    12. Hongtu Zhu & Joseph G. Ibrahim & Ming-Hui Chen, 2015. "Diagnostic measures for the Cox regression model with missing covariates," Biometrika, Biometrika Trust, vol. 102(4), pages 907-923.
    13. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    14. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    15. Elia Lapenta & Pascal Lavergne, 2022. "Encompassing Tests for Nonparametric Regressions," Papers 2203.06685, arXiv.org, revised Oct 2023.
    16. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.
    17. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    18. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.
    19. Li, Lingzhu & Chiu, Sung Nok & Zhu, Lixing, 2019. "Model checking for regressions: An approach bridging between local smoothing and global smoothing methods," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 64-82.
    20. Hongtu Zhu & Joseph G. Ibrahim & Xiaoyan Shi, 2009. "Diagnostic Measures for Generalized Linear Models with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 686-712, December.
    21. Zhang, Jun & Feng, Zhenghui & Zhou, Bu, 2014. "A revisit to correlation analysis for distortion measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 116-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:105:y:2021:i:3:d:10.1007_s10182-021-00408-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.