IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v102y2018i1d10.1007_s10182-017-0295-2.html
   My bibliography  Save this article

Impact of measurement errors on the performance and distributional properties of the multivariate capability index $$\mathbf{NMC }_\mathbf{pm }$$ NMC pm

Author

Listed:
  • Daniela F. Dianda

    (Universidad Nacional de Rosario-CONICET)

  • Marta B. Quaglino

    (Universidad Nacional de Rosario)

  • José A. Pagura

    (Universidad Nacional de Rosario)

Abstract

Current industrial processes are sophisticated enough to be tied to only one quality variable to describe the process result. Instead, many process variables need to be analyze together to assess the process performance. In particular, multivariate process capability analysis (MPCIs) has been the focus of study during the last few decades, during which many authors proposed alternatives to build the indices. These measures are extremely attractive to people in charge of industrial processes, because they provide a single measure that summarizes the whole process performance regarding its specifications. In most practical applications, these indices are estimated from sampling information collected by measuring the variables of interest on the process outcome. This activity introduces an additional source of variation to data, that needs to be considered, regarding its effect on the properties of the indices. Unfortunately, this problem has received scarce attention, at least in the multivariate domain. In this paper, we study how the presence of measurement errors affects the properties of one of the MPCIs recommended in previous researches. The results indicate that even little measurement errors can induce distortions on the index value, leading to wrong conclusions about the process performance.

Suggested Citation

  • Daniela F. Dianda & Marta B. Quaglino & José A. Pagura, 2018. "Impact of measurement errors on the performance and distributional properties of the multivariate capability index $$\mathbf{NMC }_\mathbf{pm }$$ NMC pm," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 117-143, January.
  • Handle: RePEc:spr:alstar:v:102:y:2018:i:1:d:10.1007_s10182-017-0295-2
    DOI: 10.1007/s10182-017-0295-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-017-0295-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-017-0295-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Scagliarini, 2011. "Multivariate process capability using principal component analysis in the presence of measurement errors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 113-128, June.
    2. Wang, F. K. & Du, T. C. T., 2000. "Using principal component analysis in process performance for multivariate data," Omega, Elsevier, vol. 28(2), pages 185-194, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Xiong & Martin Skitmore & Bo Xia, 2015. "Exploring and validating the internal dimensions of occupational stress: evidence from construction cost estimators in China," Construction Management and Economics, Taylor & Francis Journals, vol. 33(5-6), pages 495-507, June.
    2. J. N. Pan & Sheau-Chiann Chen, 2013. "Correlated Risk Assessment and Its Managerial Applications," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.
    3. Pearn, W.L. & Wu, Chien-Wei, 2006. "Production quality and yield assurance for processes with multiple independent characteristics," European Journal of Operational Research, Elsevier, vol. 173(2), pages 637-647, September.
    4. Wu, Chien-Wei & Pearn, W.L. & Kotz, Samuel, 2009. "An overview of theory and practice on process capability indices for quality assurance," International Journal of Production Economics, Elsevier, vol. 117(2), pages 338-359, February.
    5. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    6. Panagopoulos, Orestis P. & Pappu, Vijay & Xanthopoulos, Petros & Pardalos, Panos M., 2016. "Constrained subspace classifier for high dimensional datasets," Omega, Elsevier, vol. 59(PA), pages 40-46.
    7. Lei Wang & Yan Yan & Xiaoteng Li & Xiaosong Chen, 2018. "General Component Analysis (GCA): A new approach to identify Chinese corporate bond market structures," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-18, July.
    8. Huda, Shamsul & Abdollahian, Mali & Mammadov, Musa & Yearwood, John & Ahmed, Shafiq & Sultan, Ibrahim, 2014. "A hybrid wrapper–filter approach to detect the source(s) of out-of-control signals in multivariate manufacturing process," European Journal of Operational Research, Elsevier, vol. 237(3), pages 857-870.
    9. Seebacher, Gottfried & Winkler, Herwig, 2015. "A capability approach to evaluate supply chain flexibility," International Journal of Production Economics, Elsevier, vol. 167(C), pages 177-186.
    10. Das Nandini & Dwivedi Prem Saurav, 2013. "Multivariate Process Capability Index: A Review and Some Results," Stochastics and Quality Control, De Gruyter, vol. 28(2), pages 151-166, December.
    11. L.S. Dharmasena & P. Zeephongsekul, 2016. "A new process capability index for multiple quality characteristics based on principal components," International Journal of Production Research, Taylor & Francis Journals, vol. 54(15), pages 4617-4633, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:102:y:2018:i:1:d:10.1007_s10182-017-0295-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.