IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i1d10.1007_s10463-021-00788-1.html
   My bibliography  Save this article

Wasserstein statistics in one-dimensional location scale models

Author

Listed:
  • Shun-ichi Amari

    (RIKEN Center for Brain Science)

  • Takeru Matsuda

    (RIKEN Center for Brain Science)

Abstract

Wasserstein geometry and information geometry are two important structures to be introduced in a manifold of probability distributions. Wasserstein geometry is defined by using the transportation cost between two distributions, so it reflects the metric of the base manifold on which the distributions are defined. Information geometry is defined to be invariant under reversible transformations of the base space. Both have their own merits for applications. In this study, we analyze statistical inference based on the Wasserstein geometry in the case that the base space is one-dimensional. By using the location-scale model, we further derive the W-estimator that explicitly minimizes the transportation cost from the empirical distribution to a statistical model and study its asymptotic behaviors. We show that the W-estimator is consistent and explicitly give its asymptotic distribution by using the functional delta method. The W-estimator is Fisher efficient in the Gaussian case.

Suggested Citation

  • Shun-ichi Amari & Takeru Matsuda, 2022. "Wasserstein statistics in one-dimensional location scale models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 33-47, February.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:1:d:10.1007_s10463-021-00788-1
    DOI: 10.1007/s10463-021-00788-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-021-00788-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-021-00788-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bassetti, Federico & Bodini, Antonella & Regazzini, Eugenio, 2006. "On minimum Kantorovich distance estimators," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1298-1302, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, W. & Rubio, F.J., 2022. "On a prior based on the Wasserstein information matrix," Statistics & Probability Letters, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    2. Emanuele Dolera, 2022. "Preface to the Special Issue on “Bayesian Predictive Inference and Related Asymptotics—Festschrift for Eugenio Regazzini’s 75th Birthday”," Mathematics, MDPI, vol. 10(15), pages 1-4, July.
    3. Aude Geneway & Gabriel Peyré & Marco Cuturi, 2017. "Learning Generative Models with Sinkhorn Divergences," Working Papers 2017-83, Center for Research in Economics and Statistics.
    4. Morgan A. Schmitz & Matthieu Heitz & Nicolas Bonneel & Fred Ngolè & David Coeurjolly, 2017. "Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning," Working Papers 2017-84, Center for Research in Economics and Statistics.
    5. Manuel Arellano & Stéphane Bonhomme, 2023. "Recovering Latent Variables by Matching," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 693-706, January.
    6. Combes, Catherine & Ng, Hon Keung Tony, 2022. "On parameter estimation for Amoroso family of distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 309-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:1:d:10.1007_s10463-021-00788-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.