IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v69y2017i2d10.1007_s10463-015-0546-5.html
   My bibliography  Save this article

Is the Brownian bridge a good noise model on the boundary of a circle?

Author

Listed:
  • Giacomo Aletti

    (Università degli Studi di Milano)

  • Matteo Ruffini

    (C/Diputacin, 303, Ático)

Abstract

In this paper, we study periodical stochastic processes, and we define the conditions that are needed by a model to be a good noise model on the circumference. The classes of processes that fit the required conditions are studied together with their expansion in random Fourier series to provide results about their path regularity. Finally, we discuss a simple and flexible parametric model with prescribed regularity that is used in applications, and we prove the asymptotic properties of the maximum likelihood estimates of model parameters.

Suggested Citation

  • Giacomo Aletti & Matteo Ruffini, 2017. "Is the Brownian bridge a good noise model on the boundary of a circle?," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 389-416, April.
  • Handle: RePEc:spr:aistmt:v:69:y:2017:i:2:d:10.1007_s10463-015-0546-5
    DOI: 10.1007/s10463-015-0546-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-015-0546-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-015-0546-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asger Hobolth & Jan Pedersen & Eva Jensen, 2003. "A continuous parametric shape model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 227-242, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chunfeng & Li, Ao, 2021. "On Lévy’s Brownian motion and white noise space on the circle," Statistics & Probability Letters, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chunfeng & Li, Ao, 2021. "On Lévy’s Brownian motion and white noise space on the circle," Statistics & Probability Letters, Elsevier, vol. 171(C).
    2. Berrendero, José R. & Cuevas, Antonio & Pateiro-López, Beatriz, 2016. "Shape classification based on interpoint distance distributions," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 237-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:69:y:2017:i:2:d:10.1007_s10463-015-0546-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.