Exact tests for singular network data
Author
Abstract
Suggested Citation
DOI: 10.1007/s10463-014-0472-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yuguo Chen & Junyi Xie & Jun S. Liu, 2005. "Stoppingātime resampling for sequential Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 199-217, April.
- Yuguo Chen & Persi Diaconis & Susan P. Holmes & Jun S. Liu, 2005. "Sequential Monte Carlo Methods for Statistical Analysis of Tables," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 109-120, March.
- Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Clemens Draxler, 2018. "Bayesian conditional inference for Rasch models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 245-262, April.
- Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2024.
"MCMC conditional maximum likelihood for the two-way fixed-effects logit,"
Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 379-404, July.
- Bartolucci, Francesco & Pigini, Claudia & Valentini, Francesco, 2021. "MCMC Conditional Maximum Likelihood for the two-way fixed-effects logit," MPRA Paper 110034, University Library of Munich, Germany.
- Radislav Vaisman & Ofer Strichman & Ilya Gertsbakh, 2015. "Model Counting of Monotone Conjunctive Normal Form Formulas with Spectra," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 406-415, May.
- Drew Creal, 2012.
"A Survey of Sequential Monte Carlo Methods for Economics and Finance,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
- Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Sanda Micula, 2015. "Statistical Computer Simulations And Monte Carlo Methods," Romanian Economic Business Review, Romanian-American University, vol. 9(2), pages 384-394, December.
- Radislav Vaisman & Dirk P. Kroese, 2017. "Stochastic Enumeration Method for Counting Trees," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 31-73, March.
- Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
- Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
- Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
- Myriam Patricia Cifuentes & Clara Mercedes Suarez & Ricardo Cifuentes & Noel Malod-Dognin & Sam Windels & Jose Fernando Valderrama & Paul D. Juarez & R. Burciaga Valdez & Cynthia Colen & Charles Phill, 2022. "Big Data to Knowledge Analytics Reveals the Zika Virus Epidemic as Only One of Multiple Factors Contributing to a Year-Over-Year 28-Fold Increase in Microcephaly Incidence," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
- Silvia de Juan & Maria Dulce Subida & Andres Ospina-Alvarez & Ainara Aguilar & Miriam Fernandez, 2020. "Disentangling the socio-ecological drivers behind illegal fishing in a small-scale fishery managed by a TURF system," Papers 2012.08970, arXiv.org.
- Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
- Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
- Federica Cugnata & Silvia Salini & Elena Siletti, 2021. "Deepening Well-Being Evaluation with Different Data Sources: A Bayesian Networks Approach," IJERPH, MDPI, vol. 18(15), pages 1-10, July.
- Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Robert Stojnic & Audrey Qiuyan Fu & Boris Adryan, 2012. "A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-13, November.
- Lidia Ceriani & Chiara Gigliarano, 2020.
"Multidimensional Well-Being: A Bayesian Networks Approach,"
Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
- Lidia Ceriani & Chiara Gigliarano, 2016. "Multidimensional well-being: A Bayesian Networks approach," Working Papers 399, ECINEQ, Society for the Study of Economic Inequality.
- Almudevar, Anthony, 2016. "An information theoretic approach to pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 107(C), pages 52-64.
- Martin Huber, 2024.
"An introduction to causal discovery,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 160(1), pages 1-16, December.
- Martin Huber, 2024. "An Introduction to Causal Discovery," Papers 2407.08602, arXiv.org.
- Cornwell, Nikki & Bilson, Christopher & Gepp, Adrian & Stern, Steven & Vanstone, Bruce J., 2023. "Modernising operational risk management in financial institutions via data-driven causal factors analysis: A pre-registered study," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
More about this item
Keywords
Basin of attraction; Biological network; Conditional test; Polynomial dynamics; Sequential importance sampling; Sufficient statistic;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:67:y:2015:i:4:p:687-706. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.