IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v67y2015i1p19-38.html
   My bibliography  Save this article

Maximizing leave-one-out likelihood for the location parameter of unbounded densities

Author

Listed:
  • Krzysztof Podgórski
  • Jonas Wallin

Abstract

We propose simple estimation of the location parameter for a density that is unbounded at the mode. The estimator maximizes a modified likelihood in which the singular term in the full likelihood is left out, whenever the parameter value approaches a neighborhood of the singularity location. The consistency and super-efficiency of this maximum leave-one-out likelihood estimator is shown through a direct argument. The importance for estimation within parametric families is discussed and illustrated by an example involving the gamma mixture of normal distributions. Copyright The Institute of Statistical Mathematics, Tokyo 2015

Suggested Citation

  • Krzysztof Podgórski & Jonas Wallin, 2015. "Maximizing leave-one-out likelihood for the location parameter of unbounded densities," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 19-38, February.
  • Handle: RePEc:spr:aistmt:v:67:y:2015:i:1:p:19-38
    DOI: 10.1007/s10463-013-0437-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-013-0437-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-013-0437-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanakorn Nitithumbundit & Jennifer S. K. Chan, 2020. "ECM Algorithm for Auto-Regressive Multivariate Skewed Variance Gamma Model with Unbounded Density," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1169-1191, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    2. Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
    3. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    4. Xiang, Sijia & Yao, Weixin & Seo, Byungtae, 2016. "Semiparametric mixture: Continuous scale mixture approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 413-425.
    5. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    6. Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
    7. Heather Shappell & Sean L. Simpson, 2022. "Discussion on “Distributional independent component analysis for diverse neuroimaging modalities” by Ben Wu, Subhadip Pal, Jian Kang, and Ying Guo," Biometrics, The International Biometric Society, vol. 78(3), pages 1106-1108, September.
    8. Xuwen Zhu & Volodymyr Melnykov, 2015. "Probabilistic assessment of model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 395-422, December.
    9. Luis Angel García-Escudero & Alfonso Gordaliza & Francesca Greselin & Salvatore Ingrassia & Agustín Mayo-Iscar, 2018. "Eigenvalues and constraints in mixture modeling: geometric and computational issues," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 203-233, June.
    10. Sangkon Oh & Byungtae Seo, 2023. "Merging Components in Linear Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 25-51, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:67:y:2015:i:1:p:19-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.