IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v65y2013i5p889-912.html
   My bibliography  Save this article

On the convergence rate of the unscented transformation

Author

Listed:
  • Kwang Ahn
  • Kung-Sik Chan

Abstract

Nonlinear state-space models driven by differential equations have been widely used in science. Their statistical inference generally requires computing the mean and covariance matrix of some nonlinear function of the state variables, which can be done in several ways. For example, such computations may be approximately done by Monte Carlo, which is rather computationally expensive. Linear approximation by the first-order Taylor expansion is a fast alternative. However, the approximation error becomes non-negligible with strongly nonlinear functions. Unscented transformation was proposed to overcome these difficulties, but it lacks theoretical justification. In this paper, we derive some theoretical properties of the unscented transformation and contrast it with the method of linear approximation. Particularly, we derive the convergence rate of the unscented transformation. Copyright The Institute of Statistical Mathematics, Tokyo 2013

Suggested Citation

  • Kwang Ahn & Kung-Sik Chan, 2013. "On the convergence rate of the unscented transformation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 889-912, October.
  • Handle: RePEc:spr:aistmt:v:65:y:2013:i:5:p:889-912
    DOI: 10.1007/s10463-013-0397-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-013-0397-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-013-0397-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahn, Kwang Woo & Chan, Kung-Sik, 2014. "Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 243-254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:65:y:2013:i:5:p:889-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.