IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v40y1988i2p297-309.html
   My bibliography  Save this article

Asymptotic expansions of posterior expectations, distributions and densities for stochastic processes

Author

Listed:
  • Martin Crowder

Abstract

No abstract is available for this item.

Suggested Citation

  • Martin Crowder, 1988. "Asymptotic expansions of posterior expectations, distributions and densities for stochastic processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(2), pages 297-309, June.
  • Handle: RePEc:spr:aistmt:v:40:y:1988:i:2:p:297-309
    DOI: 10.1007/BF00052346
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00052346
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00052346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    2. Dasgupta, Shibasish & Khare, Kshitij & Ghosh, Malay, 2014. "Asymptotic expansion of the posterior density in high dimensional generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 126-148.
    3. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    4. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    5. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    6. Kim, Jae-Young, 2012. "Model selection in the presence of nonstationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 247-257.
    7. Kim, Jae-Young, 2014. "An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification," Journal of Econometrics, Elsevier, vol. 178(P1), pages 132-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:40:y:1988:i:2:p:297-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.