IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v12y2018i4d10.1007_s11634-017-0285-y.html
   My bibliography  Save this article

Ensemble feature selection for high dimensional data: a new method and a comparative study

Author

Listed:
  • Afef Ben Brahim

    (Université de Tunis, Tunis Business School, LARODEC)

  • Mohamed Limam

    (Dhofar University)

Abstract

The curse of dimensionality is based on the fact that high dimensional data is often difficult to work with. A large number of features can increase the noise of the data and thus the error of a learning algorithm. Feature selection is a solution for such problems where there is a need to reduce the data dimensionality. Different feature selection algorithms may yield feature subsets that can be considered local optima in the space of feature subsets. Ensemble feature selection combines independent feature subsets and might give a better approximation to the optimal subset of features. We propose an ensemble feature selection approach based on feature selectors’ reliability assessment. It aims at providing a unique and stable feature selection without ignoring the predictive accuracy aspect. A classification algorithm is used as an evaluator to assign a confidence to features selected by ensemble members based on their associated classification performance. We compare our proposed approach to several existing techniques and to individual feature selection algorithms. Results show that our approach often improves classification performance and feature selection stability for high dimensional data sets.

Suggested Citation

  • Afef Ben Brahim & Mohamed Limam, 2018. "Ensemble feature selection for high dimensional data: a new method and a comparative study," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 937-952, December.
  • Handle: RePEc:spr:advdac:v:12:y:2018:i:4:d:10.1007_s11634-017-0285-y
    DOI: 10.1007/s11634-017-0285-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-017-0285-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-017-0285-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Alberto Holgado-Apaza & Nelly Jacqueline Ulloa-Gallardo & Ruth Nataly Aragon-Navarrete & Raidith Riva-Ruiz & Naomi Karina Odagawa-Aragon & Danger David Castellon-Apaza & Edgar E. Carpio-Vargas & , 2024. "The Exploration of Predictors for Peruvian Teachers’ Life Satisfaction through an Ensemble of Feature Selection Methods and Machine Learning," Sustainability, MDPI, vol. 16(17), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:12:y:2018:i:4:d:10.1007_s11634-017-0285-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.