IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v12y2018i3d10.1007_s11634-017-0294-x.html
   My bibliography  Save this article

Signal classification with a point process distance on the space of persistence diagrams

Author

Listed:
  • Andrew Marchese

    (University of Tennessee)

  • Vasileios Maroulas

    (University of Tennessee)

Abstract

In this paper, we consider the problem of signal classification. First, the signal is translated into a persistence diagram through the use of delay-embedding and persistent homology. Endowing the data space of persistence diagrams with a metric from point processes, we show that it admits statistical structure in the form of Fréchet means and variances and a classification scheme is established. In contrast with the Wasserstein distance, this metric accounts for changes in small persistence and changes in cardinality. The classification results using this distance are benchmarked on both synthetic data and real acoustic signals and it is demonstrated that this classifier outperforms current signal classification techniques.

Suggested Citation

  • Andrew Marchese & Vasileios Maroulas, 2018. "Signal classification with a point process distance on the space of persistence diagrams," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 657-682, September.
  • Handle: RePEc:spr:advdac:v:12:y:2018:i:3:d:10.1007_s11634-017-0294-x
    DOI: 10.1007/s11634-017-0294-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-017-0294-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-017-0294-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasileios Maroulas & Cassie Putman Micucci & Adam Spannaus, 2020. "A stable cardinality distance for topological classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 611-628, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:12:y:2018:i:3:d:10.1007_s11634-017-0294-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.