IDEAS home Printed from https://ideas.repec.org/a/sos/sosjrn/200318.html
   My bibliography  Save this article

Can Twitter Forecast Uncertainty of Stocks?Abstract: Academic studies have shown that there is a relationship between emotional analysis results of tweets and stock price movements, and then stock prices can be estimated using this relationship. In this study, in which the effect of tweets on the volatility of the stock is estimated, the volatility scores and the emotion scores between the stocks were also revealed. In the scope of the study, sentiment analysis with Naive Bayes was performed on Turkish tweets shared by three phone companies (Alcatel, Turkcell and Vestel) which are in Borsa Istanbul and whose products are sold in Turkey. According to the results of the analysis, it was found that sentiment scores obtained for Turkcell and Vestel significantly increased Alcatel's conditional variance statistically

Author

Listed:
  • Gürkan BOZMA
  • Sinan KUL

Abstract

No abstract is available for this item.

Suggested Citation

  • Gürkan BOZMA & Sinan KUL, 2020. "Can Twitter Forecast Uncertainty of Stocks?Abstract: Academic studies have shown that there is a relationship between emotional analysis results of tweets and stock price movements, and then stock pri," Sosyoekonomi Journal, Sosyoekonomi Society, issue 28(45).
  • Handle: RePEc:sos:sosjrn:200318
    as

    Download full text from publisher

    File URL: http://dergipark.gov.tr/download/article-file/835138
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    3. Jin, Xi & Shen, Dehua & Zhang, Wei, 2016. "Has microblogging changed stock market behavior? Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 151-156.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. Chan, Wesley S. & Frankel, Richard & Kothari, S.P., 2004. "Testing behavioral finance theories using trends and consistency in financial performance," Journal of Accounting and Economics, Elsevier, vol. 38(1), pages 3-50, December.
    6. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    7. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    8. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    9. Sanjiv Sabherwal & Salil K. Sarkar & Ying Zhang, 2011. "Do Internet Stock Message Boards Influence Trading? Evidence from Heavily Discussed Stocks with No Fundamental News," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 38(9-10), pages 1209-1237, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charilaos Mertzanis & Noha Allam, 2018. "Political Instability and Herding Behaviour: Evidence from Egypt’s Stock Market," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(1), pages 29-59, April.
    2. Eierle, Brigitte & Klamer, Sebastian & Muck, Matthias, 2022. "Does it really pay off for investors to consider information from social media?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    3. Tai-Yuen Hon & Massoud Moslehpour & Kai-Yin Woo, 2021. "Review on Behavioral Finance with Empirical Evidence," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(4), pages 15-41, December.
    4. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    5. Kukacka, Jiri & Barunik, Jozef, 2013. "Behavioural breaks in the heterogeneous agent model: The impact of herding, overconfidence, and market sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5920-5938.
    6. Sabiou Inoua, 2015. "The Intrinsic Instability of Financial Markets," Papers 1508.02203, arXiv.org.
    7. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    8. Pruna, Radu T. & Polukarov, Maria & Jennings, Nicholas R., 2018. "Avoiding regret in an agent-based asset pricing model," Finance Research Letters, Elsevier, vol. 24(C), pages 273-277.
    9. Víctor Alberto Pena & Alina Gómez-Mejía, 2019. "Effect of the anchoring and adjustment heuristic and optimism bias in stock market forecasts," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 11(2), pages 389-409, November.
    10. Goodman, James, 2014. "Evidence for ecological learning and domain specificity in rational asset pricing and market efficiency," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 48(C), pages 27-39.
    11. Alizadeh, Amir H. & Thanopoulou, Helen & Yip, Tsz Leung, 2017. "Investors’ behavior and dynamics of ship prices: A heterogeneous agent model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 98-114.
    12. Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
    13. Vivien Lespagnol & Juliette Rouchier, 2015. "What Is the Impact of Heterogeneous Knowledge About Fundamentals on Market Liquidity and Efficiency: An ABM Approach," Lecture Notes in Economics and Mathematical Systems, in: Frédéric Amblard & Francisco J. Miguel & Adrien Blanchet & Benoit Gaudou (ed.), Advances in Artificial Economics, edition 127, pages 105-117, Springer.
    14. Abakah, Emmanuel Joel Aikins & Abdullah, Mohammad & Yousaf, Imran & Kumar Tiwari, Aviral & Li, Yanshuang, 2024. "Economic sanctions sentiment and global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    15. Jasman Tuyon & Zamri Ahmada, 2016. "Behavioural finance perspectives on Malaysian stock market efficiency," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(1), pages 43-61, March.
    16. Fabio Della Rossa & Lorenzo Giannini & Pietro DeLellis, 2020. "Herding or wisdom of the crowd? Controlling efficiency in a partially rational financial market," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    17. Imran Yousaf & Shoaib Ali & Syed Zulfiqar Ali Shah, 2018. "Herding behavior in Ramadan and financial crises: the case of the Pakistani stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-14, December.
    18. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    19. Seth Anderson & T. Randolph Beard & Hyeongwoo Kim & Liliana V. Stern, 2016. "The Short-Run Pricing Behavior of Closed-End Funds: Bond vs. Equity Funds," Journal of Financial Services Research, Springer;Western Finance Association, vol. 50(3), pages 363-386, December.
    20. Mian, G. Mujtaba & Sharma, Piyush & Gul, Ferdinand A., 2018. "Investor sentiment and advertising expenditure," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 611-627.

    More about this item

    Keywords

    Sentiment Analysis; Turkish Tweet; Natural Language Processing; Data Mining; Text Mining; Stock Market Prediction; Machine Learning; Naive Bayes; BEKK-GARCH-X.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sos:sosjrn:200318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aysen Sivrikaya (email available below). General contact details of provider: http://www.sosyoekonomijournal.org/home.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.