IDEAS home Printed from https://ideas.repec.org/a/sgh/annals/i37y2015p39-56.html
   My bibliography  Save this article

Interest rate risk immunisation for life insurers

Author

Listed:
  • Elżbieta Krajewska

    (Politechnika Łódzka)

Abstract

This paper investigates some applications of immunisation inequality introduced by Gajek, Krajewska (2013) for life insurers’ portfolios. When net insurance premiums are considered, a lower bound given by this inequality is a product of two terms. One of them, L2(s), might be treated as a measure of interest rate risk. In the paper, formulas for L2(s) are given for life insurance products, such as term life insurance, pure endowment, temporary life annuity.

Suggested Citation

  • Elżbieta Krajewska, 2015. "Interest rate risk immunisation for life insurers," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 37, pages 39-56.
  • Handle: RePEc:sgh:annals:i:37:y:2015:p:39-56
    as

    Download full text from publisher

    File URL: http://rocznikikae.sgh.waw.pl/p/roczniki_kae_z37_02.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Takami, Marcelo Yoshio & Tabak, Benjamin Miranda, 2008. "Interest rate option pricing and volatility forecasting: An application to Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 755-763.
    3. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    4. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    5. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    6. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    7. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    8. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    9. Emmanuel Coffie, 2021. "Delay stochastic interest rate model with jump and strong convergence in Monte Carlo simulations," Papers 2103.07651, arXiv.org, revised Jul 2021.
    10. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    11. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    12. Chang, Chuang-Chang, 2001. "Efficient procedures for the valuation and hedging of American currency options with stochastic interest rates," Journal of Multinational Financial Management, Elsevier, vol. 11(3), pages 241-268, July.
    13. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    14. repec:uts:finphd:40 is not listed on IDEAS
    15. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    16. Hiraki, Takato & Takezawa, Nobuya, 1997. "How sensitive is short-term Japanese interest rate volatility to the level of the interest rate?," Economics Letters, Elsevier, vol. 56(3), pages 325-332, November.
    17. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    18. Kim, Dong H. & Stock, Duane, 2014. "The effect of interest rate volatility and equity volatility on corporate bond yield spreads: A comparison of noncallables and callables," Journal of Corporate Finance, Elsevier, vol. 26(C), pages 20-35.
    19. A Craig Burnside & Jeremy J Graveline, 2020. "On the Asset Market View of Exchange Rates," The Review of Financial Studies, Society for Financial Studies, vol. 33(1), pages 239-260.
    20. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    21. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:annals:i:37:y:2015:p:39-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michał Bernardelli (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.