IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2020i1p14-23.html
   My bibliography  Save this article

Сравнительный анализ прогнозных моделей ARIMA и lSTM на примере акций российских компаний // Comparative Analysis of ARIMA and lSTM Predictive Models: Evidence from Russian Stocks

Author

Listed:
  • A. Alzheev V.

    (Financial University)

  • R. Kochkarov A.

    (Financial University)

  • А. Алжеев В.

    (Финансовый университет)

  • Р. Кочкаров А.

    (Финансовый университет)

Abstract

The article aims to find the best time series predictive model, considering the minimization of errors and high accuracy of the prediction. The authors performed the comparative analysis of the most popular “traditional” econometric model ARIMA and the deep learning model LSTM (Long short-term memory) based on a recurrent neural network. The study provides a mathematical description of these predictive models. The authors developed algorithms for predicting time series based on the “Rolling forecasting origin” approach. These are Python-based algorithms using the Keras, Theano and Statsmodels libraries. Stock quotes of Russian companies Alrosa, Gazprom, KamAZ, NLMK, Kiwi, Rosneft, VTB and Yandex for the period from June 2, 2014 to November 11, 2019, broken down by week, served as input data. The research results confirm the superiority of the LSTM model, where the RMSE error is 65% less than with the ARIMA model. Therefore, an LSTM model-based algorithm is more preferable for the better quality of time series prediction. Цель статьи — поиск лучшей модели для прогноза временных рядов с учетом минимизации ошибок и высокой точности прогноза. Использован метод сравнительного анализа наиболее популярной «традиционной» эконометрической модели ARIMA и модели глубокого обучения LSTM (Long short-term memory) на основе рекуррентной нейронной сети. Приведено математическое описание этих прогнозных моделей. Авторы разработали алгоритмы для прогноза временных рядов, основанные на подходе “Rolling forecasting origin” («прогнозирование происхождения»). Алгоритмы реализованы в среде программирования Python с подключенными библиотеками Keras, Theano и Statsmodels. В качестве входных наборов данных импортированы значения котировок акций российских компаний: Алроса, Газпром, КамАЗ, НЛМК, Киви, Роснефть, ВТБ и Яндекс за период с 02.06.2014 по 11.11.2019 г. с разбивкой по неделям. Результаты исследования подтверждают превосходство модели LSTM, при которой среднеквадратическая ошибка RMSE на 65% меньше, чем при использовании модели ARIMA. Сделан вывод, что для повышения качества прогноза временных рядов предпочтительно применять алгоритм на основе модели LSTM.

Suggested Citation

  • A. Alzheev V. & R. Kochkarov A. & А. Алжеев В. & Р. Кочкаров А., 2020. "Сравнительный анализ прогнозных моделей ARIMA и lSTM на примере акций российских компаний // Comparative Analysis of ARIMA and lSTM Predictive Models: Evidence from Russian Stocks," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 24(1), pages 14-23.
  • Handle: RePEc:scn:financ:y:2020:i:1:p:14-23
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/950/633.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ARIMA; LSTM; predictive models; stocks; analysis; stock quote prediction; algorithms; ARIMA; LSTM; прогнозные модели; акции; анализ; прогнозирование котировок; алгоритмы; C01; JEL C01;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2020:i:1:p:14-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.