IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2019i2p105-116.html
   My bibliography  Save this article

Взаимосвязь цен на нефть и макроэкономических показателей в России // Relationship between Oil Price and Macroeconomic Indicators in Russia

Author

Listed:
  • A. Mikhailov Yu.

    (Financial University, Moscow)

  • D. Burakov B.

    (Financial University, Moscow)

  • V. Didenko Yu.

    (Financial University, Moscow)

  • А. Михайлов Ю.

    (Финансовый университет, Москва)

  • Д. Бураков В.

    (Финансовый университет, Москва)

  • В. Диденко Ю.

    (Финансовый университет, Москва)

Abstract

One of the most important external factors affecting the exchange rate of the US dollar to the Russian rouble has been the global oil price. Russia, whose economy is mainly associated with oil production, is one of the world’s largest oil suppliers. Therefore, the slightest fluctuations in oil prices can have a significant effect on its economy. The aim of the article is to study the relationship between macroeconomic parameters and oil prices. The objectives of the study are to identify factors having a long-term positive relationship with oil prices based on a mathematical approach, as well as to propose improvements for Russian macroeconomic indicators. The authors use modern mathematical methods of vector autoregression (VAR-model), the Granger method and the Dickey-Fuller test to study the long-term and shortterm relationships between the relevant time series for the period from 2014 to 2016. On this basis, it was calculated that a 1% increase in GDP leads to a strengthening of the national currency by 1.47%. This fact can be explained by the overall growth of the national economy. The Granger test results for the model show that global oil price (and Russian GDP) has the greatest impact on the exchange rate in the short term. The following actions are proposed for improving macroeconomic indicators: stabilisation of foreign economic policy; diversification of exports (although oil revenues can serve as a tool for improving the quality of Russian economic development and public life in general); development of the Russian ‘Urals’ benchmark and increasing its trading volumes on the world market; transition to rubles for settlements of Russian oil and gas; use of a ruble indicator (ruble barrel) of the ‘Urals’ oil price to support the development of Russia’s financial and economic policy. Одним из важнейших внешних факторов, влияющих на курс доллара к рублю, продолжает оставаться мировая цена на нефть. Россия — один из крупнейших в мире поставщиков «черного золота», ее экономика в основном связана с нефтедобычей. Поэтому малейшие колебания цен на нефть оказывают на нее сильнейшее влияние. Цель работы — изучение взаимосвязи между макроэкономическими параметрами и ценами на нефть. Задачи исследования: выявление факторов, имеющих долгосрочную положительную связь с ценами на нефть на основе математического подхода и подготовка предложений по улучшению макроэкомических индикаторов России. Авторы используют современные математические методы векторной авторегрессии (VAR-модель), метод Грэнджера, тест Дики-Фуллера для исследования долгосрочных и краткосрочных отношений между временными рядами за период c 2014 по 2016 г. Рассчитано, что рост ВВП на 1% приводит к укреплению национальной валюты на 1,47%. Этот факт можно объяснить ростом экономики страны в целом. Результаты теста Грейнджера для модели показывают, что цена на нефть (как и ВВП) оказывает наибольшее влияние на валютный курс в краткосрочной перспективе. Предложены следующие действия по улучшению макроэкономических показателей: стабилизация внешнеэкономической политики; диверсификация экспорта: нефтяные доходы могут превратиться в инструмент повышения качества развития российской экономики и жизни общества в целом; формирование российского бэнчмарка Urals и повышение объемов торгов по нему до мирового уровня; перевод расчетов за российскую нефть и газ в рубли; использование рублевого индикатора (рублевый баррель) цены на нефть марки Urals при формировании финансово-экономической политики России.

Suggested Citation

  • A. Mikhailov Yu. & D. Burakov B. & V. Didenko Yu. & А. Михайлов Ю. & Д. Бураков В. & В. Диденко Ю., 2019. "Взаимосвязь цен на нефть и макроэкономических показателей в России // Relationship between Oil Price and Macroeconomic Indicators in Russia," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 23(2), pages 105-116.
  • Handle: RePEc:scn:financ:y:2019:i:2:p:105-116
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/843/557.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    2. Domenico Ferraro & Kenneth S. Rogoff & Barbara Rossi, 2011. "Can oil prices forecast exchange rates?," Working Papers 11-34, Federal Reserve Bank of Philadelphia.
    3. Alexey Yurievich Mikhaylov, 2018. "Pricing in Oil Market and Using Probit Model for Analysis of Stock Market Effects," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 69-73.
    4. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    5. Maurizio Michael Habib & Sascha Bützer & Livio Stracca, 2016. "Global Exchange Rate Configurations: Do Oil Shocks Matter?," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 64(3), pages 443-470, August.
    6. Alexey Yurievich Mikhaylov, 2018. "Volatility Spillover Effect between Stock and Exchange Rate in Oil Exporting Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 321-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaehyung An & Alexey Mikhaylov & Nikita Moiseev, 2019. "Oil Price Predictors: Machine Learning Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 1-6.
    2. Anthony Nyangarika & Alexey Mikhaylov & Ulf Henning Richter, 2019. "Influence Oil Price towards Macroeconomic Indicators in Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 123-129.
    3. Xenia Tabachkova, 2021. "Consequences of Oil Supply and Demand on the Electricity Market: Coronavirus Effect," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 573-580.
    4. Anthony Nyangarika & Alexey Mikhaylov & Ulf Henning Richter, 2019. "Oil Price Factors: Forecasting on the Base of Modified Auto-regressive Integrated Moving Average Model," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 149-159.
    5. Hong, Yanran & Cao, Shijiao & Xu, Pengfei & Pan, Zhigang, 2024. "Interpreting the effect of global economic risks on crude oil market: A supply-demand perspective," International Review of Financial Analysis, Elsevier, vol. 91(C).
    6. Beckmann, Joscha & Czudaj, Robert L. & Arora, Vipin, 2020. "The relationship between oil prices and exchange rates: Revisiting theory and evidence," Energy Economics, Elsevier, vol. 88(C).
    7. Joseph P Byrne & Ryuta Sakemoto & Bing Xu, 2020. "Commodity price co-movement: heterogeneity and the time-varying impact of fundamentals [Oil price shocks and the stock market: evidence from Japan]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 499-528.
    8. Jean-Pierre Allegret & Cécile Couharde & Valérie Mignon & Tovonony Razafindrabe, 2017. "Oil currencies in the face of oil shocks: what can be learned from time-varying specifications?," Applied Economics, Taylor & Francis Journals, vol. 49(18), pages 1774-1793, April.
    9. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    10. Beckmann, Joscha & Czudaj, Robert, 2013. "Is there a homogeneous causality pattern between oil prices and currencies of oil importers and exporters?," Energy Economics, Elsevier, vol. 40(C), pages 665-678.
    11. Mikhail Bondarev, 2020. "Energy Consumption of Bitcoin Mining," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 525-529.
    12. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    13. Artur Meynkhard, 2020. "Priorities of Russian Energy Policy in Russian-Chinese Relations," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 65-71.
    14. Marcel Fratzscher & Daniel Schneider & Ine Van Robays, 2013. "Oil Prices, Exchange Rates and Asset Prices," Discussion Papers of DIW Berlin 1302, DIW Berlin, German Institute for Economic Research.
    15. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    16. Parul Bhatia, 2021. "Sustainability Of Exchange Rates And Crude Oil Prices Connection With Covid-19: An Investigation For Brics," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 19-29, October.
    17. Fe Amor Parel Gudmundsson & Sergey Prosekov & Natalia Sokolinskaya & Sergey Tarakanov & Evgeniy Lopatin, 2020. "Factors of the Formation of Modern Energetic Reality in North Western Europe," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 539-544.
    18. Djeutem, Edouard & Dunbar, Geoffrey R., 2022. "Uncovered return parity: Equity returns and currency returns," Journal of International Money and Finance, Elsevier, vol. 128(C).
    19. Jo o Marcos Mott Pavanelli & Alexandre Toshiro Igari, 2019. "Institutional Reproduction and Change: An Analytical Framework for Brazilian Electricity Generation Choices," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 252-263.
    20. Anthony Msafiri Nyangarika & Alexey Yurievich Mikhaylov & Bao-jun Tang, 2018. "Correlation of Oil Prices and Gross Domestic Product in Oil Producing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 42-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2019:i:2:p:105-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.