IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2019i1p79-95.html
   My bibliography  Save this article

Аналитические методы оценки и прогнозирования финансового состояния кредитных организаций // Analytical Methods for Assessing and Forecasting Financial Standing of Credit Institutions

Author

Listed:
  • Y. Beketnova M.

    (Financial university)

  • Ю. Бекетнова М.

    (Финансовый университет)

Abstract

The objective of the article is to propose a new approach to assessing and forecasting fnancial condition of credit institutions and to early detection of those that have high risks of license revocation. An integrated reliability index of credit institutions has been revealed by the method of the main components of the factor analysis. Credit institutions have been clustered by means of the k-average method. It has been established that acting credit institutions at a relatively small Euclidean distance from the mathematical expectation of credit institutions, liquidated at a given moment of time, bear potential risks of engaging in illegal activities, money laundering and terrorist fnancing. Constructed regression models allow forecasting deterioration of credit institutions by the nature of the change in the integrated reliability index. The author concludes that this approach makes it possible to identify potentially problematic credit institutions requiring appropriate measures from the Central Bank of the Russian Federation through prudential supervision functions. Цель статьи — предложить новый подход к оценке и прогнозированию финансового состояния кредитных организаций и раннему выявлению тех из них, которые имеют высокие риски отзыва лицензии. Методом главных компонент факторного анализа найден интегральный показатель благонадежности кредитных организаций. Проведена кластеризация кредитных организаций методом к-средних. Установлено, что действующие кредитные организации, находящиеся на относительно малом евклидовом расстоянии от математического ожидания кредитных организаций, ликвидированных в заданный момент времени, несут потенциальные риски вовлечения в противоправную деятельность, отмывание денег и финансирование терроризма. Построены регрессионные модели, позволяющие по характеру изменения интегрального показателя благонадежности прогнозировать ухудшение состояния кредитных организаций. Автор делает вывод, что приведенный подход позволяет выявлять потенциально проблемные кредитные организации, требующие принятия соответствующих мер со стороны Центрального банка Российской Федерации при осуществлении им функций пруденциального надзора.

Suggested Citation

  • Y. Beketnova M. & Ю. Бекетнова М., 2019. "Аналитические методы оценки и прогнозирования финансового состояния кредитных организаций // Analytical Methods for Assessing and Forecasting Financial Standing of Credit Institutions," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 23(1), pages 79-95.
  • Handle: RePEc:scn:financ:y:2019:i:1:p:79-95
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/820/544.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2019:i:1:p:79-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.