IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2018i5p76-89.html
   My bibliography  Save this article

Развитие каналов кредитования в условиях перехода к цифровой экономике: моделирование спроса // The Development of Credit Channels in the transition to the Digital Economy: Demand Modelling

Author

Listed:
  • O. Lunyakov V.

    (Financial university, Moscow)

  • N. Lunyakova A.

    (Financial university, Moscow)

  • О. Луняков В.

    (Финансовый университет, Москва)

  • Н. Лунякова А.

    (Финансовый университет, Москва)

Abstract

The article substantiates and formalizes, in analytical form, the probabilistic model of demand for alternative lending channels, taking into account the common and distinctive characteristics of traditional and new ways to take a credit. To develop this model, the advantages and disadvantages of lending channels have emphasized. The possible exclusive scenarios of the credit market development in conditions of digitalization of the economy have been identifed. Taking into account the trends and scenarios for the development of credit channels, a descriptive model of the institutional structure of the demand and supply of credit has been proposed. It is supposed that traditional lending institutions will be able to adapt the business to innovative technologies, offering customers fundamentally new business models, which will perfectly correspond to the sphere of FinTech. According to the descriptive model, the authors proposed to estimate the market share of lending channels based on the application of utility theory and discrete choice models. It is assumed that potential borrowers make a choice of one / another lending channel from available alternatives, maximizing the utility, under the influence of personal and consumer characteristics of the loan. The authors formalized a multidimensional logit model (nested logit model — NLM) for describing the discrete choice of an alternative lending channel and the corresponding subgroups of lenders (traditional, FinTech and BigTech companies). In this case, the distinctive feature of NLM is a possibility of taking into account the correlations in borrowers’ preferences. The conditions for the application of the developed model have determined. Due to the lack of relevant statistical data as to the volume of lending by the digital channels, the authors modelled changes in the market share of the traditional lending channel based on hypothetical data (characteristics of credit). In the process of modelling, the authors showed nonlinear changes in the demand for an alternative lending channel owing to the existence of individual preferences of potential borrowers. The proposed approach can be used to model and forecast the changes in the credit market conditions В статье обоснована и формализована в аналитической форме вероятностная модель спроса на альтернативные каналы кредитования с учетом общих и отличительных характеристик традиционных и новых способов предоставления кредита. Для построения указанной модели выделены преимущества и недостатки каналов кредитования; определены возможные не взаимоисключающие сценарии развития кредитного рынка в условиях цифровизации экономики. Принимая во внимание тенденции и сценарии развития каналов кредитования, построена дескриптивная модель институциональной структуры спроса и предложения кредита. В соответствии с предложенной моделью традиционные кредитные институты смогут адаптироваться к инновационным технологиям, предлагая клиентам принципиально новые бизнес-модели, что вполне будет соответствовать сфере FinTech. Согласно дескриптивной модели авторы предлагают оценивать рыночную долю соответствующих каналов кредитования на основе положений теории полезности и вероятностных моделей дискретного выбора. Предполагается, что потенциальные заемщики производят выбор того или иного канала кредитования из имеющихся альтернатив, максимизируя свою полезность, под воздействием личных и потребительских характеристик кредита. Авторы формализовали многомерную логит-модель с группировками (nested logit models — NLM) для описания дискретного выбора альтернативного канала кредитования и соответствующих подгрупп кредиторов (традиционные, FinTech и BigTech-компании), отличительной особенностью которой является учет возможных корреляций в предпочтениях заемщиков. Определены условия прикладного приложения разработанной модели. В силу отсутствия репрезентативных статистических данных относительно объемов кредитования через цифровые каналы, авторы смоделировали изменения в рыночной доле традиционного канала кредитования на основе гипотетических данных, характеризующих потребительские свойства способов получения кредита. В процессе моделирования авторы показали нелинейный характер в изменении спроса на альтернативный канал кредитования в случае имеющихся предпочтений у потенциальных заемщиков. Предложенный научно-методический подход может служить основой для моделирования и прогнозирования конъюнктуры кредитного рынка.

Suggested Citation

  • O. Lunyakov V. & N. Lunyakova A. & О. Луняков В. & Н. Лунякова А., 2018. "Развитие каналов кредитования в условиях перехода к цифровой экономике: моделирование спроса // The Development of Credit Channels in the transition to the Digital Economy: Demand Modelling," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(5), pages 76-89.
  • Handle: RePEc:scn:financ:y:2018:i:5:p:76-89
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/753/516.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert DeYoung & Tara N. Rice, 2004. "How do banks make money? the fallacies of fee income," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 28(Q IV), pages 34-51.
    2. Buchak, Greg & Matvos, Gregor & Piskorski, Tomasz & Seru, Amit, 2018. "Fintech, regulatory arbitrage, and the rise of shadow banks," Journal of Financial Economics, Elsevier, vol. 130(3), pages 453-483.
    3. Courtney M. Carter & Traci L. Mach & Cailin R. Slattery, 2014. "Peer-to-peer lending to small businesses," Finance and Economics Discussion Series 2014-10, Board of Governors of the Federal Reserve System (U.S.).
    4. Seth M. Freedman & Ginger Zhe Jin, 2011. "Learning by Doing with Asymmetric Information: Evidence from Prosper.com," NBER Working Papers 16855, National Bureau of Economic Research, Inc.
    5. Wong, Timothy & Brownstone, David & Bunch, David S., 2019. "Aggregation biases in discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 210-221.
    6. Karen Mills & Brayden McCarthy, 2014. "The State of Small Business Lending: Credit Access during the Recovery and How Technology May Change the Game," Harvard Business School Working Papers 15-004, Harvard Business School.
    7. de Roure, Calebe & Pelizzon, Loriana & Tasca, Paolo, 2016. "How does P2P lending fit into the consumer credit market?," Discussion Papers 30/2016, Deutsche Bundesbank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olena Havrylchyk, 2018. "Regulatory framework for the loan-based crowdfunding platforms," OECD Economics Department Working Papers 1513, OECD Publishing.
    2. Cornelli, Giulio & Frost, Jon & Gambacorta, Leonardo & Jagtiani, Julapa, 2024. "The impact of fintech lending on credit access for U.S. small businesses," Journal of Financial Stability, Elsevier, vol. 73(C).
    3. Brian S. Chen & Samuel G. Hanson & Jeremy C. Stein, 2017. "The Decline of Big-Bank Lending to Small Business: Dynamic Impacts on Local Credit and Labor Markets," NBER Working Papers 23843, National Bureau of Economic Research, Inc.
    4. Wang, Xiaoting & Hou, Siyuan & Kyaw, Khine & Xue, Xupeng & Liu, Xueqin, 2023. "Exploring the determinants of Fintech Credit: A comprehensive analysis," Economic Modelling, Elsevier, vol. 126(C).
    5. José María Liberti & Mitchell A. Petersen, 2018. "Information: Hard and Soft," NBER Working Papers 25075, National Bureau of Economic Research, Inc.
    6. Lu, Haitian & Wang, Bo & Wang, Haizhi & Zhao, Tianyu, 2020. "Does social capital matter for peer-to-peer-lending? Empirical evidence," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    7. Majid Bazarbash, 2019. "FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk," IMF Working Papers 2019/109, International Monetary Fund.
    8. Pacelli, Vincenzo & Miglietta, Federica & Foglia, Matteo, 2022. "The extreme risk connectedness of the new financial system: European evidence," International Review of Financial Analysis, Elsevier, vol. 84(C).
    9. Bertsch, Christoph & Hull, Isaiah & Qi, Yingjie & Zhang, Xin, 2020. "Bank misconduct and online lending," Journal of Banking & Finance, Elsevier, vol. 116(C).
    10. Murinde, Victor & Rizopoulos, Efthymios & Zachariadis, Markos, 2022. "The impact of the FinTech revolution on the future of banking: Opportunities and risks," International Review of Financial Analysis, Elsevier, vol. 81(C).
    11. Jagtiani, Julapa & Lemieux, Catharine, 2018. "Do fintech lenders penetrate areas that are underserved by traditional banks?," Journal of Economics and Business, Elsevier, vol. 100(C), pages 43-54.
    12. Kowalewski, Oskar & Pisany, Paweł, 2023. "The rise of fintech: A cross-country perspective," Technovation, Elsevier, vol. 122(C).
    13. Anil Savio Kavuri & Alistair Milne, 2019. "FinTech and the future of financial services: What are the research gaps?," CAMA Working Papers 2019-18, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. Manasa Gopal & Philipp Schnabl, 2022. "The Rise of Finance Companies and FinTech Lenders in Small Business Lending," The Review of Financial Studies, Society for Financial Studies, vol. 35(11), pages 4859-4901.
    15. Tu D. Q. Le & Tin H. Ho & Dat T. Nguyen & Thanh Ngo, 2021. "Fintech Credit and Bank Efficiency: International Evidence," IJFS, MDPI, vol. 9(3), pages 1-16, August.
    16. Heil, Mark, 2019. "Missing the cut? How threshold effects distort U.S. small business lending trends," Finance Research Letters, Elsevier, vol. 28(C), pages 82-86.
    17. Cornelli, Giulio & Frost, Jon & Gambacorta, Leonardo & Rau, P. Raghavendra & Wardrop, Robert & Ziegler, Tania, 2023. "Fintech and big tech credit: Drivers of the growth of digital lending," Journal of Banking & Finance, Elsevier, vol. 148(C).
    18. Knyazeva, Anzhela, 2019. "Financial innovation in microcap public offerings," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 283-305.
    19. José María Liberti & Mitchell A Petersen, 2019. "Information: Hard and Soft," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 8(1), pages 1-41.
    20. Chen, Ting-Hsuan & Shen, Chung-Hua & Wu, Meng-Wen & Huang, Kuo-Jui, 2021. "Effect of shadow banking on the relation between capital and liquidity creation," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 166-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2018:i:5:p:76-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.