IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2018i5p141-153.html
   My bibliography  Save this article

Моделирование изменения цены биржевого инструмента на базе микроструктурных рыночных данных // Modeling Stock Price Changes Based on Microstructural Market Data

Author

Listed:
  • N. Bilev A.

    (Lomonosov Moscow State university, Mosocow)

  • Н. Билев А.

    (Московский государственный университет им. М. В. Ломоносова, Москва)

Abstract

In modern electronic stock exchanges there is an opportunity to analyze event driven market microstructure data. This data is highly informative and describes physical price formation which makes it possible to find complex patterns in price dynamics. It is very time consuming and hard to find this kind of patterns by handcrafted rules. However, modern machine learning models are able to solve such issues automatically by learning price behavior which is always changing. The present study presents profitable trading system based on a machine learning model and market microstructure data. Data for the research was collected from Moscow stock exchange MICEX and represents a limit order book change log and all market trades of a liquid security for a certain period. Logistic regression model was used and compared to neural network models with different configuration. According to the study results logistic regression model has almost the same prediction quality as neural network models have but also has a high speed of response which is very important for stock market trading. The developed trading system has medium frequency of deals submission that lets it to avoid expensive infrastructure which is usually needed in high-frequency trading systems. At the same time, the system uses the potential of high quality market microstructure data to the full extent. This paper describes the entire process of trading system development including feature engineering, models behavior comparison and creation of trading strategy with testing on historical data. На современных биржевых площадках, где большинство операций совершается посредством электронных транзакций, появляется возможность анализировать событийные микроструктурные рыночные данные. Они описывают физическое формирование цены на биржевые инструменты и обладают высокой информативностью, позволяя торговой системе находить сложные закономерности в поведении цены. Выявление таких закономерностей вручную является очень трудоемким процессом. Однако современные модели машинного обучения способны решать подобные задачи автоматически, подстраиваясь под постоянно меняющееся поведение рынка. В данной работе разрабатывается торговая система на базе модели машинного обучения и микроструктурных рыночных данных. Для исследования собрана информация с московской биржи ММВБ о событийных изменениях биржевой книги заявок и ленте всех сделок по ликвидному биржевому инструменту. Для моделирования используется модель логистической регрессии и ряд моделей искусственных нейронных сетей. Результаты исследования демонстрируют, что модель логистической регрессии не уступает в качестве прогнозирования более сложным моделям и при этом имеет высокую скорость формирования прогноза, что очень важно при принятии торгового решения на современных торговых площадках. Разработанная торговая система имеет среднюю частоту заключения сделок, что позволяет избежать дорогой инфраструктуры по сравнению с высокочастотной биржевой торговлей, но при этом дает возможность использовать весь потенциал высококачественных микроструктурных рыночных данных. Статья описывает все этапы построения торговой системы, включая выбор признаков для моделирования, сравнительный анализ моделей прогнозирования изменения цены, а также создание торгового алгоритма с тестированием на исторических данных. Он может применяться различными инвестиционными институтами для эффективного управления капиталом в биржевых торгах. Разработка более сложных и детальных торговых алгоритмов на базе модели машинного обучения позволит увеличить конечную эффективность всей торговой системы.

Suggested Citation

  • N. Bilev A. & Н. Билев А., 2018. "Моделирование изменения цены биржевого инструмента на базе микроструктурных рыночных данных // Modeling Stock Price Changes Based on Microstructural Market Data," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(5), pages 141-153.
  • Handle: RePEc:scn:financ:y:2018:i:5:p:141-153
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/757/537.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoffmann, Peter, 2014. "A dynamic limit order market with fast and slow traders," Journal of Financial Economics, Elsevier, vol. 113(1), pages 156-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    2. NIdhi Aggarwal & Venkatesh Panchapagesan & Susan Thomas, 2022. "When is the Order to Trade Ratio fee effective?," Working Papers 8, xKDR.
    3. George Jiang & Ingrid Lo & Giorgio Valente, 2014. "High-Frequency Trading around Macroeconomic News Announcements: Evidence from the U.S. Treasury Market," Staff Working Papers 14-56, Bank of Canada.
    4. Aggarwal, Nidhi & Panchapagesan, Venkatesh & Thomas, Susan, 2023. "When is the order-to-trade ratio fee effective?," Journal of Financial Markets, Elsevier, vol. 62(C).
    5. Seddon, Jonathan J.J.M. & Currie, Wendy L., 2017. "A model for unpacking big data analytics in high-frequency trading," Journal of Business Research, Elsevier, vol. 70(C), pages 300-307.
    6. Ya‐Kai Chang & Robin K. Chou, 2022. "Algorithmic trading and market quality: Evidence from the Taiwan index futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1837-1855, October.
    7. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    8. He, Xue-Zhong & Lin, Shen, 2022. "Reinforcement Learning Equilibrium in Limit Order Markets," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    9. Breckenfelder, Johannes, 2024. "Competition among high-frequency traders and market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 166(C).
    10. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    11. Luca Lalor & Anatoliy Swishchuk, 2024. "Market Simulation under Adverse Selection," Papers 2409.12721, arXiv.org.
    12. Songzi Du & Haoxiang Zhu, 2017. "What is the Optimal Trading Frequency in Financial Markets?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(4), pages 1606-1651.
    13. Bartlett, Robert P. & McCrary, Justin, 2019. "How rigged are stock markets? Evidence from microsecond timestamps," Journal of Financial Markets, Elsevier, vol. 45(C), pages 37-60.
    14. Yannick Limmer & Thilo Meyer-Brandis, 2021. "Large Platonic Markets with Delays," Papers 2110.13678, arXiv.org.
    15. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    16. Daniel Fricke & Austin Gerig, 2018. "Too fast or too slow? Determining the optimal speed of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 519-532, April.
    17. Brogaard, Jonathan & Hendershott, Terrence & Riordan, Ryan, 2017. "High frequency trading and the 2008 short-sale ban," Journal of Financial Economics, Elsevier, vol. 124(1), pages 22-42.
    18. Choi, Jin Hyuk & Larsen, Kasper & Seppi, Duane J., 2019. "Information and trading targets in a dynamic market equilibrium," Journal of Financial Economics, Elsevier, vol. 132(3), pages 22-49.
    19. Xuefeng Gao & Yunhan Wang, 2018. "Optimal Market Making in the Presence of Latency," Papers 1806.05849, arXiv.org, revised Mar 2020.
    20. Hans Degryse & Mark Van Achter & Gunther Wuyts, 2022. "Plumbing of Securities Markets: The Impact of Post-trade Fees on Trading and Welfare," Management Science, INFORMS, vol. 68(1), pages 635-653, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2018:i:5:p:141-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.