Author
Listed:
- N. Karabutov N.
(Moscow State Engineering University of Radio Engineering)
- V. Feklin G.
(Financial University)
- Н. Карабутов Н.
(Московский государственный технический университет радиотехники, электроники и автоматики)
- В. Феклин Г.
(Финансовый университет)
Abstract
Dynamics of debt on loans is important characteristic of the development of the real sector of the economy. Growth of arrears indicates negative trend of the economic development of the real sector of the economy. In connection with the above monitoring and forecasting of the volume of the overdue debt has a very importance in the conditions of economic instability. We used the Official statistics of the Central Bank of the Russian Federation to show a steady decline in the share of overdue debt in the period from January 2011 to December 2013, and the change of this trend in the beginning of 2014. Greatest growth of overdue debts since the beginning of 2015, which was a manifestation of the crisis phenomena in the Russian economy.In this article we constructed models for predicting the volume of overdue debt on loans to legal entities and individual entrepreneurs. There was evaluated the predictive properties of the constructed models and showed the advantage of the use of the identification approach to the choice of model structure. Динамика задолженности по кредитам во многом характеризует развитие реального сектора экономики, а рост просроченной задолженности указывает на ухудшение этого развития. В связи с этим в условиях экономической нестабильности особенно актуальными являются мониторинг и прогнозирование объема просроченной задолженности. Официальная статистика Центрального банка Российской Федерации показывает, что в период с января 2011 г. по декабрь 2013 г. наблюдалось устойчивое снижение доли просроченной задолженности, а в начале 2014 г. произошла смена направления тренда. Набольший рост просроченной задолженности наблюдается с начала 2015 г., что объясняется проявлением кризисных явлений в российской экономике. В статье построены модели прогнозирования объема просроченной задолженности по кредитам юридических лиц и индивидуальных предпринимателей, оценены прогнозирующие свойства построенных моделей, показано преимущество применения идентификационного подхода к выбору структуры модели.
Suggested Citation
N. Karabutov N. & V. Feklin G. & Н. Карабутов Н. & В. Феклин Г., 2015.
"Модели Прогнозирования Объема Просроченной Задолженности По Кредитам // Forecasting Models The Volume Of Overdue Debt On Loans,"
Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, issue 4, pages 116-121.
Handle:
RePEc:scn:financ:y:2015:i:4:p:116-121
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2015:i:4:p:116-121. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.