IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2015i2p135-141.html
   My bibliography  Save this article

Оценка Персонала С Использованием Бинарной Регрессии // Staff Appraisal Using A Binary Regression

Author

Listed:
  • A. Zinchenko A.

    (Financial University)

  • А. Зинченко А.

    (Финансовый университет)

Abstract

The paper shows the possibility of the efficient evaluation of candidates for positions with the help of the binary-regression. The absence of expertise in using math methods by personnel departments makes recruitment process modeling inefficient, so the results obtained via binary-regression is of great importance.The purpose of the research is to show the relationship between the data in CVs and the fact of passing the probation period by employees. The author had at his disposal data of candidates’ CVs provided by several HR- agencies to their clients. Some of employees had passed the probation, some of them had not passed. To carry out the research the author chose three types of models - logit, probit, gompit.To estimate the parameters and the quality of the constructed models the author wrote the code in Maple computer algebra system. According to the results of the research the best predicting model was chosen. В статье показана возможность эффективной оценки кандидатов на должности при помощи моделей бинарного выбора. Применение математических методов в данной области способно повысить объективность принятия кадровых решений, а также упростить работу менеджеров по персоналу в случае осуществления массового подбора, что является обычной практикой для кадровых агентств.Цель исследования - показать наличие статистической зависимости между информацией, указанной в резюме работника, и фактом прохождения испытательного срока. В качестве статистики автор располагал резюме работников, рекомендованных несколькими кадровыми агентствами своим клиентам. Среди этих данных присутствовали резюме людей, оставшихся работать в фирме и не прошедших испытательный срок. Для исследования были выбраны три типа моделей: пробит, логит и гомпит.Для оценки параметров и качества построенных моделей разработана программа в среде Maple. Исходя из полученных результатов, была выбрана модель, наиболее удачно предсказывающая прохождение работником испытательного срока.

Suggested Citation

  • A. Zinchenko A. & А. Зинченко А., 2015. "Оценка Персонала С Использованием Бинарной Регрессии // Staff Appraisal Using A Binary Regression," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, issue 2, pages 135-141.
  • Handle: RePEc:scn:financ:y:2015:i:2:p:135-141
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/135/134.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    2. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    2. Robert Kaestner, 1995. "The Effects of Cocaine and Marijuana Use on Marriage and Marital Stability," NBER Working Papers 5038, National Bureau of Economic Research, Inc.
    3. Jonathan K. Budd & Peter G. Taylor, 2015. "Calculating optimal limits for transacting credit card customers," Papers 1506.05376, arXiv.org, revised Aug 2015.
    4. Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
    5. Dinh, K. & Kleimeier, S., 2006. "Credit scoring for Vietnam's retail banking market : implementation and implications for transactional versus relationship lending," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    6. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    7. Jean-Louis Mucchielli & Thierry Mayer, 1999. "La localisation à l'étranger des entreprises multinationales," Post-Print hal-01016877, HAL.
    8. Neubecker, Nina & Smolka, Marcel, 2013. "Co-national and cross-national pulls in international migration to Spain," International Review of Economics & Finance, Elsevier, vol. 28(C), pages 51-61.
    9. Michael Gerfin & Michael Lechner, 2002. "A Microeconometric Evaluation of the Active Labour Market Policy in Switzerland," Economic Journal, Royal Economic Society, vol. 112(482), pages 854-893, October.
    10. Ulf Römer & Oliver Musshoff, 2017. "Can agricultural credit scoring for microfinance institutions be implemented and improved by weather data?," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 78(1), pages 83-97, December.
    11. Celine Bonnet & Pierre Dubois & Sofia B. Villas Boas & Daniel Klapper, 2013. "Empirical Evidence on the Role of Nonlinear Wholesale Pricing and Vertical Restraints on Cost Pass-Through," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 500-515, May.
    12. Michel Beine & Marco Delogu & Lionel Ragot, 2020. "The role of fees in foreign education: evidence from Italy [Determinants of international student migration]," Journal of Economic Geography, Oxford University Press, vol. 20(2), pages 571-600.
    13. Joshua Sikhu Okonya & Netsayi Noris Mudege & Anne M. Rietveld & Anastase Nduwayezu & Déo Kantungeko & Bernadette Marie Hakizimana & John Njuki Nyaga & Guy Blomme & James Peter Legg & Jürgen Kroschel, 2019. "The Role of Women in Production and Management of RTB Crops in Rwanda and Burundi: Do Men Decide, and Women Work?," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    14. Riccardo Crescenzi & Carlo Pietrobelli & Roberta Rabellotti, 2012. "Innovation Drivers, Value Chains and the Geography of Multinational Firms in European Regions," LEQS – LSE 'Europe in Question' Discussion Paper Series 53, European Institute, LSE.
    15. Thu Hien DAO & Frédéric DOCQUIER & Mathilde MAUREL & Pierre SCHAUS, 2017. "Global Migration in the 20th and 21st Centuries: the Unstoppable Force of Demography," Working Paper 96d89f28-0e80-4703-9b33-6, Agence française de développement.
    16. Lindelow, Magnus, 2002. "Health care demand in rural Mozambique," FCND discussion papers 126, International Food Policy Research Institute (IFPRI).
    17. Palmero, Alfredo Jiménez & Herrera, Juan José Durán & Sabaté, Juan Manuel de la Fuente, 2013. "The role of psychic distance stimuli on the East-West FDI location structure in the EU. Evidence from Spanish MNEs," Journal of East European Management Studies, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 18(1), pages 36-65.
    18. Ana Teresa Tavares & Stephen Young, 2006. "Sourcing patterns of foreign-owned multinational subsidiaries in Europe," Regional Studies, Taylor & Francis Journals, vol. 40(6), pages 583-600.
    19. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    20. Jean-Louis Mucchielli & Florence Puech, 2003. "Internationalisation et localisation des firmes multinationales : l'exemple des entreprises françaises en Europe," Économie et Statistique, Programme National Persée, vol. 363(1), pages 129-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2015:i:2:p:135-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.