IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2015i2p135-141.html
   My bibliography  Save this article

Оценка Персонала С Использованием Бинарной Регрессии // Staff Appraisal Using A Binary Regression

Author

Listed:
  • A. Zinchenko A.

    (Financial University)

  • А. Зинченко А.

    (Финансовый университет)

Abstract

The paper shows the possibility of the efficient evaluation of candidates for positions with the help of the binary-regression. The absence of expertise in using math methods by personnel departments makes recruitment process modeling inefficient, so the results obtained via binary-regression is of great importance.The purpose of the research is to show the relationship between the data in CVs and the fact of passing the probation period by employees. The author had at his disposal data of candidates’ CVs provided by several HR- agencies to their clients. Some of employees had passed the probation, some of them had not passed. To carry out the research the author chose three types of models - logit, probit, gompit.To estimate the parameters and the quality of the constructed models the author wrote the code in Maple computer algebra system. According to the results of the research the best predicting model was chosen. В статье показана возможность эффективной оценки кандидатов на должности при помощи моделей бинарного выбора. Применение математических методов в данной области способно повысить объективность принятия кадровых решений, а также упростить работу менеджеров по персоналу в случае осуществления массового подбора, что является обычной практикой для кадровых агентств.Цель исследования - показать наличие статистической зависимости между информацией, указанной в резюме работника, и фактом прохождения испытательного срока. В качестве статистики автор располагал резюме работников, рекомендованных несколькими кадровыми агентствами своим клиентам. Среди этих данных присутствовали резюме людей, оставшихся работать в фирме и не прошедших испытательный срок. Для исследования были выбраны три типа моделей: пробит, логит и гомпит.Для оценки параметров и качества построенных моделей разработана программа в среде Maple. Исходя из полученных результатов, была выбрана модель, наиболее удачно предсказывающая прохождение работником испытательного срока.

Suggested Citation

  • A. Zinchenko A. & А. Зинченко А., 2015. "Оценка Персонала С Использованием Бинарной Регрессии // Staff Appraisal Using A Binary Regression," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, issue 2, pages 135-141.
  • Handle: RePEc:scn:financ:y:2015:i:2:p:135-141
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/135/134.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    2. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    2. Dinh, K. & Kleimeier, S., 2006. "Credit scoring for Vietnam's retail banking market : implementation and implications for transactional versus relationship lending," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    3. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    4. Jean-Louis Mucchielli & Thierry Mayer, 1999. "La localisation à l'étranger des entreprises multinationales," Post-Print hal-01016877, HAL.
    5. Michael Gerfin & Michael Lechner, 2002. "A Microeconometric Evaluation of the Active Labour Market Policy in Switzerland," Economic Journal, Royal Economic Society, vol. 112(482), pages 854-893, October.
    6. Joshua Sikhu Okonya & Netsayi Noris Mudege & Anne M. Rietveld & Anastase Nduwayezu & Déo Kantungeko & Bernadette Marie Hakizimana & John Njuki Nyaga & Guy Blomme & James Peter Legg & Jürgen Kroschel, 2019. "The Role of Women in Production and Management of RTB Crops in Rwanda and Burundi: Do Men Decide, and Women Work?," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    7. Riccardo Crescenzi & Carlo Pietrobelli & Roberta Rabellotti, 2012. "Innovation Drivers, Value Chains and the Geography of Multinational Firms in European Regions," LEQS – LSE 'Europe in Question' Discussion Paper Series 53, European Institute, LSE.
    8. Thu Hien DAO & Frédéric DOCQUIER & Mathilde MAUREL & Pierre SCHAUS, 2017. "Global Migration in the 20th and 21st Centuries: the Unstoppable Force of Demography," Working Paper 96d89f28-0e80-4703-9b33-6, Agence française de développement.
    9. Tarp, Finn & Simler, Kenneth R. & Matusse, Cristina & Heltberg, Rasmus & Dava, Gabriel, 2002. "The robustness of poverty profiles reconsidered," FCND discussion papers 126, International Food Policy Research Institute (IFPRI).
    10. Palmero, Alfredo Jiménez & Herrera, Juan José Durán & Sabaté, Juan Manuel de la Fuente, 2013. "The role of psychic distance stimuli on the East-West FDI location structure in the EU. Evidence from Spanish MNEs," Journal of East European Management Studies, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 18(1), pages 36-65.
    11. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    12. Jean-Louis Mucchielli & Florence Puech, 2003. "Internationalisation et localisation des firmes multinationales : l'exemple des entreprises françaises en Europe," Économie et Statistique, Programme National Persée, vol. 363(1), pages 129-144.
    13. Belderbos, R.A., 2000. "Foreign investment and international plant configuration : whither the product cycle?," Research Memorandum 003, Maastricht University, Netherlands Institute of Business Organization and Strategy Research (NIBOR).
    14. Frédéric DOCQUIER & Joël MACHADO, 2015. "Remittance and Migration Prospects for the Twenty-First Century," Working Papers P133, FERDI.
    15. John K. Dagsvik & Steinar StrØm, 2006. "Sectoral labour supply, choice restrictions and functional form," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 803-826, September.
    16. Kanchanaroek, Yingluk & Termansen, Mette & Quinn, Claire, 2013. "Property rights regimes in complex fishery management systems: A choice experiment application," Ecological Economics, Elsevier, vol. 93(C), pages 363-373.
    17. L. Bottazzi & M. Da Rin & T. Hellmann, 2007. "The Importance of Trust for Investment: Evidence from Venture Capital," Working Papers 612, Dipartimento Scienze Economiche, Universita' di Bologna.
    18. Kraft, Holger & Kroisandt, Gerald & Müller, Marlene, 2002. "Assessing the discriminatory power of credit scores," SFB 373 Discussion Papers 2002,67, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Chen Ying & Härdle Wolfgang K. & He Qiang & Majer Piotr, 2018. "Risk related brain regions detection and individual risk classification with 3D image FPCA," Statistics & Risk Modeling, De Gruyter, vol. 35(3-4), pages 89-110, July.
    20. Thomas Wainwright, 2011. "Elite Knowledges: Framing Risk and the Geographies of Credit," Environment and Planning A, , vol. 43(3), pages 650-665, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2015:i:2:p:135-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.