IDEAS home Printed from https://ideas.repec.org/a/scn/cememm/v52y2016i2p103-111.html
   My bibliography  Save this article

Выпуклость Множества Цен Опционов Как Необходимое И Достаточное Условие Отсутствия Арбитража

Author

Listed:
  • Курочкин С.В.

Abstract

Для того чтобы совокупность опционов с различными ценами исполнения на один базовый актив не содержала арбитражных возможностей (т.е. извлечения положительной прибыли при нулевых вложениях капитала и отсутствии риска потерь), их рыночные цены в каждый момент времени должны удовлетворять определенным соотношениям. Известны некоторые соотношения такого типа – монотонность, липшицевость, выпуклость, – являющиеся следствием требования безарбитражности. В работе получен полный и независимый набор конструктивно проверяемых соотношений типа выпуклости для цен опционов, представляющий необходимое и достаточное условие отсутствия арбитража. Для доказательства основного результата потребовалось сформулировать и доказать специальный вариант леммы Фаркаша. Конструкция допускает обобщение на деривативы, зависящие от нескольких базовых активов и/или имеющие произвольные кусочно-линейные профили выплат. Для этого случая доказано, что всегда имеется возможность выбрать конечное число характеристик портфеля опционов, по которым можно было бы судить о том, является ли он арбитражным.

Suggested Citation

  • Курочкин С.В., 2016. "Выпуклость Множества Цен Опционов Как Необходимое И Достаточное Условие Отсутствия Арбитража," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 52(2), pages 103-111, апрель.
  • Handle: RePEc:scn:cememm:v:52:y:2016:i:2:p:103-111
    Note: Москва
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Masaaki Kijima, 2002. "Monotonicity And Convexity Of Option Prices Revisited," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 411-425, October.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Y. Wang & H. Yin & L. Qi, 2004. "No-Arbitrage Interpolation of the Option Price Function and Its Reformulation," Journal of Optimization Theory and Applications, Springer, vol. 120(3), pages 627-649, March.
    4. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    5. Perrakis, Stylianos & Ryan, Peter J, 1984. "Option Pricing Bounds in Discrete Time," Journal of Finance, American Finance Association, vol. 39(2), pages 519-525, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    2. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    3. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    4. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    5. Basso, A. & Pianca, P., 2001. "Option pricing bounds with standard risk aversion preferences," European Journal of Operational Research, Elsevier, vol. 134(2), pages 249-260, October.
    6. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    7. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    8. Eric Rasmusen, 2004. "When Does Extra Risk Strictly Increase the Value of Options?," Finance 0409004, University Library of Munich, Germany.
    9. Lupu, Radu, 2006. "Option bounds for multinomial stock returns in Jump-Diffusion processes - a Monte Carlo simulation for a multi-jump process," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 3(2), pages 58-71, June.
    10. Peter Ryan, 2000. "Tighter Option Bounds from Multiple Exercise Prices," Review of Derivatives Research, Springer, vol. 4(2), pages 155-188, May.
    11. Bizid, Abdelhamid & Jouini, Elyès, 2005. "Equilibrium Pricing in Incomplete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(4), pages 833-848, December.
    12. Donald Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Yale School of Management Working Papers amz2581, Yale School of Management, revised 01 Jul 2005.
    13. Boyle, Phelim P. & Lin, X. Sheldon, 1997. "Bounds on contingent claims based on several assets," Journal of Financial Economics, Elsevier, vol. 46(3), pages 383-400, December.
    14. Perrakis, Stylianos, 1989. "Les contributions de la théorie financière à la solution de problèmes en organisation industrielle et en microéconomie appliquée," L'Actualité Economique, Société Canadienne de Science Economique, vol. 65(4), pages 518-546, décembre.
    15. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    16. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    17. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    18. George M. Constantinides & Michal Czerwonko & Stylianos Perrakis, 2020. "Mispriced index option portfolios," Financial Management, Financial Management Association International, vol. 49(2), pages 297-330, June.
    19. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    20. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:cememm:v:52:y:2016:i:2:p:103-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergei Parinov (email available below). General contact details of provider: http://www.cemi.rssi.ru/emm/home.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.