IDEAS home Printed from https://ideas.repec.org/a/scn/cememm/v52y2016i1p67-78.html
   My bibliography  Save this article

О Проблеме Преждевременного Прекращения Инвестиционного Проекта

Author

Listed:
  • Смоляк С.А.

Abstract

Рассматриваются инвестиционные проекты в реальном секторе экономики с несколькими участниками. Здесь возможны ситуации, когда участник обнаруживает, что ему выгодно досрочно прекратить свое участие в проекте. Это приводит к организационным сложностям и нередко – к прекращению всего проекта. Для заблаговременного исключения таких ситуаций необходимо надлежащим образом сформировать организационно-экономический механизм реализации проекта. Выявить возможность таких ситуаций помогает предлагаемый критерий, который можно трактовать и в качестве одной из модификаций внутренней ставки доходности проекта.

Suggested Citation

  • Смоляк С.А., 2016. "О Проблеме Преждевременного Прекращения Инвестиционного Проекта," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 52(1), pages 67-78, январь.
  • Handle: RePEc:scn:cememm:v:52:y:2016:i:1:p:67-78
    Note: Москва
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Cantor, David G & Lippman, Steven A, 1995. "Optimal Investment Selection with a Multitude of Projects," Econometrica, Econometric Society, vol. 63(5), pages 1231-1240, September.
    2. Cantor, David G & Lippman, Steven A, 1983. "Investment Selection with Imperfect Capital Markets," Econometrica, Econometric Society, vol. 51(4), pages 1121-1144, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magni, Carlo Alberto, 2016. "Capital depreciation and the underdetermination of rate of return: A unifying perspective," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 54-79.
    2. Carassus, Laurence & Jouini, Elyes, 2000. "A discrete stochastic model for investment with an application to the transaction costs case," Journal of Mathematical Economics, Elsevier, vol. 33(1), pages 57-80, February.
    3. Napp, Clotilde, 2001. "Pricing issues with investment flows Applications to market models with frictions," Journal of Mathematical Economics, Elsevier, vol. 35(3), pages 383-408, June.
    4. Orakbayev E.M. & Boranbayev S.N. & Vashenko M.P. & Shananin A.A., 2015. "Mathematical Model of Kazakhstan Economy," Modern Applied Science, Canadian Center of Science and Education, vol. 9(8), pages 160-160, August.
    5. Bidard, Christian, 1999. "Fixed capital and internal rate of return," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 523-541, May.
    6. Elyès Jouini, 2003. "Market imperfections , equilibrium and arbitrage," Post-Print halshs-00167131, HAL.
    7. Alexander Alexeev & Mikhail Sokolov, 2011. "A Note on Indices of Return," EUSP Department of Economics Working Paper Series Ec-02/11, European University at St. Petersburg, Department of Economics, revised 21 Feb 2011.
    8. Mikhail V. Sokolov, 2023. "NPV, IRR, PI, PP, and DPP: a unified view," Papers 2302.02875, arXiv.org, revised May 2024.
    9. Aleksandr Alekseev & Mikhail Sokolov, 2011. "A Note on Indices of Return," EUSP Department of Economics Working Paper Series 2011/02, European University at St. Petersburg, Department of Economics, revised 21 Feb 2011.
    10. Igor Evstigneev & Dhruv Kapoor, 2009. "Arbitrage in stationary markets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 32(1), pages 5-12, May.
    11. Mikhail V. Sokolov, 2023. "An effective interest rate cap: a clarification," Papers 2307.08861, arXiv.org, revised May 2024.
    12. Sokolov, Mikhail V., 2024. "NPV, IRR, PI, PP, and DPP: A unified view," Journal of Mathematical Economics, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:cememm:v:52:y:2016:i:1:p:67-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergei Parinov (email available below). General contact details of provider: http://www.cemi.rssi.ru/emm/home.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.