IDEAS home Printed from https://ideas.repec.org/a/scn/026790/15693905.html
   My bibliography  Save this article

Credit risk modeling: combining classification and regression algorithms to predict expected loss

Author

Listed:
  • Kreienkamp T.

    (Barcelona Graduate School of Economics (GSE))

  • Kateshov A.

    (Maastricht University)

Abstract

Credit risk assessment is of paramount importance in the financial industry. Machine learning techniques have been used successfully over the last two decades to predict the probability of loan default (PD). This way, credit decisions can be automated and risk can be reduced significantly. In the more recent parts, intensified regulatory requirements led to the need to include another parameter loss given default (LGD), the share of the loan which cannot be recovered in case of loan default in risk models. We aim to build a unified credit risk model by estimating both parameters jointly to estimate expected loss. A large, highdimensional, real world dataset is used to benchmark several combinations of classification, regression and feature selection algorithms. The results indicate that non-linear techniques work especially well to model expected loss.

Suggested Citation

  • Kreienkamp T. & Kateshov A., 2014. "Credit risk modeling: combining classification and regression algorithms to predict expected loss," Journal of Corporate Finance Research Корпоративные финансы, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», issue 4 (32), pages 4-10.
  • Handle: RePEc:scn:026790:15693905
    as

    Download full text from publisher

    File URL: http://cyberleninka.ru/article/n/credit-risk-modeling-combining-classification-and-regression-algorithms-to-predict-expected-loss
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:026790:15693905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CyberLeninka (email available below). General contact details of provider: http://cyberleninka.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.