IDEAS home Printed from https://ideas.repec.org/a/scn/025686/14485207.html
   My bibliography  Save this article

On applying approximations to find optimal excess of loss reinsurance

Author

Listed:
  • Batsyn Mikhail

    (National Research University Higher School of Economics)

  • Batsyna Ekaterina

    (National Research University Higher School of Economics)

Abstract

In this paper we consider the problem of finding an optimal excess of loss reinsurance which maximizes the reliability (probability of no ruin) of the insurance company. We apply two approximate approaches to calculate the distribution of total payments. The first approach is based on normal approximation of the payments distribution. Using this approximation we have derived an integral equation on the optimal retention limit. The second approach is based on simulation techniques. To test the precision of our approaches we use an exact formula for the distribution of total payments known for the case when losses in one insured event are distributed uniformly.

Suggested Citation

  • Batsyn Mikhail & Batsyna Ekaterina, 2012. "On applying approximations to find optimal excess of loss reinsurance," Бизнес-информатика, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», issue 4 (22), pages 69-75.
  • Handle: RePEc:scn:025686:14485207
    as

    Download full text from publisher

    File URL: http://cyberleninka.ru/article/n/on-applying-approximations-to-find-optimal-excess-of-loss-reinsurance
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:025686:14485207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CyberLeninka (email available below). General contact details of provider: http://cyberleninka.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.