IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v34y2014i1a17457.html
   My bibliography  Save this article

Market Depth at the BM&FBovespa

Author

Listed:
  • Fernandes, Marcelo
  • Barros, Carlos Felipe

Abstract

O objetivo desse trabalho é estimar a medida dinâmica VNET de profundidade de mercado para ações brasileiras a partir de dados de transação. VNET mede a diferença no número de ações compradas e vendidas no intervalo de tempo necessário para que o preço se movesse além de um determinado incremento. É uma medida de liquidez realizada para uma deterioração específica de preço que pode ser calculada seguidamente ao longo do dia, capturando assim a dinâmica de curto prazo da liquidez. Em particular, assume-se que essa duração de preços segue um modelo autorregressivo de duração condicional (ACD). A natureza pré-determinada do processo ACD é conveniente porque nos permite prever mudanças futuras na liquidez de uma ação. Assim, ao identificar os melhores momentos para realizar uma operação de compra ou venda, o VNET é um excelente ponto de partida para qualquer estratégia de execução ótima. Os resultados empíricos deste trabalho indicam que a profundidade de mercado medida pelo VNET varia com ágio de compra e venda, com o volume negociado, com o número de negócios, com a duração de preços condicional, e com o seu erro de previsão. Para estimar a curva de reação do mercado, variamos os intervalos de preço usados na definição das durações de preços.

Suggested Citation

  • Fernandes, Marcelo & Barros, Carlos Felipe, 2014. "Market Depth at the BM&FBovespa," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 34(1), March.
  • Handle: RePEc:sbe:breart:v:34:y:2014:i:1:a:17457
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/17457
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foster, F Douglas & Viswanathan, S, 1995. "Can Speculative Trading Explain the Volume-Volatility Relation?," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 379-396, October.
    2. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    3. Engle, Robert F. & Lange, Joe, 2001. "Predicting VNET: A model of the dynamics of market depth," Journal of Financial Markets, Elsevier, vol. 4(2), pages 113-142, April.
    4. Hasbrouck, Joel, 1988. "Trades, quotes, inventories, and information," Journal of Financial Economics, Elsevier, vol. 22(2), pages 229-252, December.
    5. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    6. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    7. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    2. Rodrigues, Bruno Dore & Souza, Reinaldo Castro & Stevenson, Maxwell J., 2012. "An analysis of intraday market behaviour before takeover announcements," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 23-32.
    3. Yang, Joey Wenling, 2011. "Transaction duration and asymmetric price impact of trades--Evidence from Australia," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 91-102, January.
    4. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    5. Spierdijk, L., 2002. "An Empirical Analysis of the Role of the Trading Intensity in Information Dissemination on the NYSE," Other publications TiSEM d495caf0-2f2a-425f-8e50-e, Tilburg University, School of Economics and Management.
    6. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    7. Spierdijk, Laura, 2004. "An empirical analysis of the role of the trading intensity in information dissemination on the NYSE," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 163-184, March.
    8. Engle, Robert F. & Lange, Joe, 2001. "Predicting VNET: A model of the dynamics of market depth," Journal of Financial Markets, Elsevier, vol. 4(2), pages 113-142, April.
    9. Jun (Tony) Ruan & Tongshu Ma, 2017. "Bid-Ask Spread, Quoted Depths, and Unexpected Duration Between Trades," Journal of Financial Services Research, Springer;Western Finance Association, vol. 51(3), pages 385-436, June.
    10. Spierdijk, L., 2002. "An Empirical Analysis of the Role of the Trading Intensity in Information Dissemination on the NYSE," Discussion Paper 2002-30, Tilburg University, Center for Economic Research.
    11. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    12. Richard K. Lyons, 1996. "Foreign Exchange Volume: Sound and Fury Signifying Nothing?," NBER Chapters, in: The Microstructure of Foreign Exchange Markets, pages 183-208, National Bureau of Economic Research, Inc.
    13. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    14. Pascual, Roberto, 1999. "How does liquidity behave? A multidimensional analysis of NYSE stocks," DEE - Working Papers. Business Economics. WB 6433, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    15. David Easley & Robert F. Engle & Maureen O'Hara & Liuren Wu, 2008. "Time-Varying Arrival Rates of Informed and Uninformed Trades," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 171-207, Spring.
    16. repec:dau:papers:123456789/5069 is not listed on IDEAS
    17. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    18. repec:wyi:journl:002120 is not listed on IDEAS
    19. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    20. Wong, Woon K. & Tan, Dijun & Tian, Yixiang, 2009. "Informed trading and liquidity in the Shanghai Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 66-73, March.
    21. Lyons, Richard K., 1995. "Tests of microstructural hypotheses in the foreign exchange market," Journal of Financial Economics, Elsevier, vol. 39(2-3), pages 321-351.
    22. Anthony D. Hall & Nikolaus Hautsch, 2004. "A Continuous-Time Measurement of the Buy-Sell Pressure in a Limit Order Book Market," FRU Working Papers 2004/03, University of Copenhagen. Department of Economics. Finance Research Unit.
    23. Brown, Philip & Thomson, Nathanial & Walsh, David, 1999. "Characteristics of the order flow through an electronic open limit order book," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(4), pages 335-357, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:34:y:2014:i:1:a:17457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.