IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v49y2020i1p250-276.html
   My bibliography  Save this article

Ordinal Data Models for No-Opinion Responses in Attitude Survey

Author

Listed:
  • Maria Iannario
  • Marica Manisera
  • Domenico Piccolo
  • Paola Zuccolotto

Abstract

In analyzing data from attitude surveys, it is common to consider the “don’t know†responses as missing values. In this article, we present a statistical model commonly used for the analysis of responses/evaluations expressed on Likert scales and extended to take into account the presence of don’t know responses. The main objective is to offer an alternative to the usual custom to treat them as missing values by considering them as a source of uncertainty. The original proposal in this article is the introduction of the relevant covariates in order to discriminate subpopulations that can show different behaviors in choosing between a substantive response and the don’t know option.

Suggested Citation

  • Maria Iannario & Marica Manisera & Domenico Piccolo & Paola Zuccolotto, 2020. "Ordinal Data Models for No-Opinion Responses in Attitude Survey," Sociological Methods & Research, , vol. 49(1), pages 250-276, February.
  • Handle: RePEc:sae:somere:v:49:y:2020:i:1:p:250-276
    DOI: 10.1177/0049124118769081
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124118769081
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124118769081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maria Iannario, 2015. "Detecting latent components in ordinal data with overdispersion by means of a mixture distribution," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 977-987, May.
    2. Leonardo Grilli & Maria Iannario & Domenico Piccolo & Carla Rampichini, 2014. "Latent class CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 105-119, March.
    3. Maria Iannario & Marica Manisera & Domenico Piccolo & Paola Zuccolotto, 2012. "Sensory analysis in the food industry as a tool for marketing decisions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 303-321, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ribecco, Nunziata & D'Uggento, Angela Maria & Labarile, Angela, 2022. "What influences the perception of immigration in Italian adolescents? An analysis with CUB models for rating data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Manisera, Marica & Zuccolotto, Paola, 2022. "A mixture model for ordinal variables measured on semantic differential scales," Econometrics and Statistics, Elsevier, vol. 22(C), pages 98-123.
    3. Heng Xu & Nan Zhang, 2022. "From Contextualizing to Context Theorizing: Assessing Context Effects in Privacy Research," Management Science, INFORMS, vol. 68(10), pages 7383-7401, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    2. Anna Gottard & Maria Iannario & Domenico Piccolo, 2016. "Varying uncertainty in CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 225-244, June.
    3. Manisera, Marica & Zuccolotto, Paola, 2015. "Identifiability of a model for discrete frequency distributions with a multidimensional parameter space," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 302-316.
    4. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    5. Maria Iannario & Domenico Piccolo, 2016. "A comprehensive framework of regression models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 233-252, August.
    6. Yanyu Zhang & Pafe Momoisea & Qixin Lin & Jiaqi Liang & Keegan Burrow & Luca Serventi, 2023. "Evaluation of Sensory and Physicochemical Characteristics of Vitamin B 12 Enriched Whole-Meal Sourdough Bread Fermented with Propionibacterium freudenreichii," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    7. Stefania Capecchi & Maria Iannario & Rosaria Simone, 2018. "Well-Being and Relational Goods: A Model-Based Approach to Detect Significant Relationships," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 729-750, January.
    8. Marcella Corduas & Alfonso Piscitelli, 2017. "Modeling university student satisfaction: the case of the humanities and social studies degree programs," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 617-628, March.
    9. Evgeniy M. Ozhegov & Daria Teterina, 2018. "The Ensemble Method For Censored Demand Prediction," HSE Working papers WP BRP 200/EC/2018, National Research University Higher School of Economics.
    10. Domenico Piccolo & Rosaria Simone, 2019. "Rejoinder to the discussion of “The class of cub models: statistical foundations, inferential issues and empirical evidence”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 477-493, September.
    11. Jan Małecki & Konrad Terpiłowski & Maciej Nastaj & Bartosz G. Sołowiej, 2022. "Physicochemical, Nutritional, Microstructural, Surface and Sensory Properties of a Model High-Protein Bars Intended for Athletes Depending on the Type of Protein and Syrup Used," IJERPH, MDPI, vol. 19(7), pages 1-15, March.
    12. Gerhard Tutz & Micha Schneider & Maria Iannario & Domenico Piccolo, 2017. "Mixture models for ordinal responses to account for uncertainty of choice," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 281-305, June.
    13. Amalia Vanacore & Maria Sole Pellegrino, 2019. "Checking quality of sensory data via an agreement-based approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2545-2556, September.
    14. Corduas, Marcella, 2015. "A statistical model for consumer preferences: the case of Italian extra virgin olive oil," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202701, European Association of Agricultural Economists.
    15. Maurizio Carpita & Enrico Ciavolino & Mariangela Nitti, 2019. "The MIMIC–CUB Model for the Prediction of the Economic Public Opinions in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 287-305, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:49:y:2020:i:1:p:250-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.