IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v45y2016i2p304-347.html
   My bibliography  Save this article

The Factorial Survey

Author

Listed:
  • Hermann Dülmer

Abstract

The factorial survey is an experimental design consisting of varying situations (vignettes) that have to be judged by respondents. For more complex research questions, it quickly becomes impossible for an individual respondent to judge all vignettes. To overcome this problem, random designs are recommended most of the time, whereas quota designs are not discussed at all. First comparisons of random designs with fractional factorial and D-efficient designs are based on fictitious data, first comparisons with fractional factorial and confounded factorial designs are restricted to theoretical considerations. The aim of this contribution is to compare different designs regarding their reliability and their internal validity. The benchmark for the empirical comparison is established by the estimators from a parsimonious full factorial design, each answered by a sample of 132 students (real instead of fictitious data). Multilevel analyses confirm that, if they exist, balanced confounded factorial designs are ideal. A confounded D-efficient design, as proposed for the first time in this article, is also superior to simple random designs.

Suggested Citation

  • Hermann Dülmer, 2016. "The Factorial Survey," Sociological Methods & Research, , vol. 45(2), pages 304-347, May.
  • Handle: RePEc:sae:somere:v:45:y:2016:i:2:p:304-347
    DOI: 10.1177/0049124115582269
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124115582269
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124115582269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawson, John, 2002. "Regression analysis of experiments with complex confounding patterns guided by the alias matrix," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 227-241, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:45:y:2016:i:2:p:304-347. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.