IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v9y2019i1p2158244019832706.html
   My bibliography  Save this article

Method Bias in Cloze Tests as Reading Comprehension Measures

Author

Listed:
  • Purya Baghaei
  • Hamdollah Ravand

Abstract

In many reading comprehension tests, different test formats are employed. Two commonly used test formats to measure reading comprehension are sustained passages followed by some questions and cloze items. Individual differences in handling test format peculiarities could constitute a source of score variance. In this study, a bifactor Rasch model is applied to separate the cloze-specific variance in a reading comprehension test composed of sustained passages (plus questions) and a cloze passage. The results are compared with a unidimensional Rasch model where all items load on a single dimension. The inclusion of the cloze-specific dimension, that is, the method factor, improved the fit and resulted in substantially lower item difficulty estimates for the cloze items. Findings indicate that reading comprehension tests comprising sustained passages and cloze items are not unidimensional and contain a cloze-specific nuisance dimension that contaminates the latent construct variance.

Suggested Citation

  • Purya Baghaei & Hamdollah Ravand, 2019. "Method Bias in Cloze Tests as Reading Comprehension Measures," SAGE Open, , vol. 9(1), pages 21582440198, February.
  • Handle: RePEc:sae:sagope:v:9:y:2019:i:1:p:2158244019832706
    DOI: 10.1177/2158244019832706
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2158244019832706
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2158244019832706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    2. Alexander Robitzsch, 2024. "Bias-Reduced Haebara and Stocking–Lord Linking," J, MDPI, vol. 7(3), pages 1-12, September.
    3. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    4. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    5. Michela Battauz & Ruggero Bellio, 2011. "Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 40-56, January.
    6. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    7. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    8. Norman Cliff, 1989. "Ordinal consistency and ordinal true scores," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 75-91, March.
    9. Tim Kaiser & Luis Oberrauch & Günther Seeber, 2020. "Measuring economic competence of secondary school students in Germany," The Journal of Economic Education, Taylor & Francis Journals, vol. 51(3-4), pages 227-242, August.
    10. Eijffinger, Sylvester & Mahieu, Ronald & Raes, Louis, 2018. "Inferring hawks and doves from voting records," European Journal of Political Economy, Elsevier, vol. 51(C), pages 107-120.
    11. C. Glas & Anna Dagohoy, 2007. "A Person Fit Test For Irt Models For Polytomous Items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 159-180, June.
    12. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    13. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    14. Cees Glas, 1988. "The derivation of some tests for the rasch model from the multinomial distribution," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 525-546, December.
    15. Begoña A. Farizo & John Joyce & Mario Soliño, 2014. "Dealing with Heterogeneous Preferences Using Multilevel Mixed Models," Land Economics, University of Wisconsin Press, vol. 90(1), pages 181-198.
    16. Christian A. Gregory, 2020. "Are We Underestimating Food Insecurity? Partial Identification with a Bayesian 4-Parameter IRT Model," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 632-655, October.
    17. Javier Revuelta, 2004. "Analysis of distractor difficulty in multiple-choice items," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 217-234, June.
    18. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    19. Haruhiko Ogasawara, 2003. "Asymptotic standard errors of irt observed-score equating methods," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 193-211, June.
    20. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:9:y:2019:i:1:p:2158244019832706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.