IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i4p619-635.html
   My bibliography  Save this article

Generalized mixed shock model for multi-component systems in the shock environment with a change point

Author

Listed:
  • Xiaoyue Wang
  • Ru Ning
  • Xian Zhao

Abstract

The reliability of various systems under shock models has been explored extensively in the literature, where the constant mechanism of shock impact has always been studied. Nevertheless, engineering systems operate in a more complicated shock environment due to developments, and it is worth studying the reliability of such multi-component systems in a variable shock environment. Driven by the research gaps and practical situations, this paper constructs a reliability model of multi-component systems under a generalized mixed shock model with a change point. The multi-state components operate in the shock environment I initially and it may continue to run in the shock environment II after the random change point of the environment. Two novel shock impact mechanisms of the variable environment are put forward, where a series of failure criteria based on shocks are included. Four different structures of multi-component systems are considered in this paper. It can be proved that the proposed mixed shock model is a generalization of some transformed models. A multi-stage finite Markov chain imbedding approach is established to derive the probabilistic indices of the components and entire systems. Based on the engineering applications, illustrative examples are provided to verify the effectiveness of the proposed model.

Suggested Citation

  • Xiaoyue Wang & Ru Ning & Xian Zhao, 2023. "Generalized mixed shock model for multi-component systems in the shock environment with a change point," Journal of Risk and Reliability, , vol. 237(4), pages 619-635, August.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:4:p:619-635
    DOI: 10.1177/1748006X221138996
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221138996
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221138996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ranjkesh, Somayeh Hamed & Hamadani, Ali Zeinal & Mahmoodi, Safieh, 2019. "A new cumulative shock model with damage and inter-arrival time dependency," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    2. Eryilmaz, Serkan & Kan, Cihangir, 2019. "Reliability and optimal replacement policy for an extreme shock model with a change point," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    3. Coskun Kus & Altan Tuncel & Serkan Eryilmaz, 2022. "Assessment of Shock Models for a Particular Class of Intershock Time Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 213-231, March.
    4. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    5. Song, Sanling & Coit, David W. & Feng, Qianmei, 2014. "Reliability for systems of degrading components with distinct component shock sets," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 115-124.
    6. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    7. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Hsing-Ming Chang & James C. Fu, 2022. "On Distribution and Average Run Length of a Two-Stage Control Process," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2723-2742, December.
    9. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    10. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Heterogeneous standby systems with shocks-driven preventive replacements," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1189-1197.
    11. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Changzhen & Yang, Jun & Li, Mingjia & Wang, Ning, 2024. "Reliability analysis of a two-dimensional linear consecutive-(r,s)-out-of-(m,n): F repairable system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Zhao, Xian & Wang, Chen & Wang, Siqi, 2024. "Reliability analysis of multi-state balanced systems with standby components switching mechanism," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2021. "Joint optimal mission aborting and replacement and maintenance scheduling in dual-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Zhao, Xian & Dong, Bingbing & Wang, Xiaoyue, 2023. "Reliability analysis of a two-dimensional voting system equipped with protective devices considering triggering failures," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Wang, Xiaoyue & Ning, Ru & Zhao, Xian & Zhou, Jian, 2022. "Reliability analyses of k-out-of-n: F capability-balanced systems in a multi-source shock environment," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    5. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Zhao, Xian & Qi, Xin & Wang, Xiaoyue, 2023. "Reliability assessment for coherent systems operating under a generalized mixed shock model with multiple change points of the environment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Wang, Xiaoyue & Zhao, Xian & Wu, Congshan & Wang, Siqi, 2022. "Mixed shock model for multi-state weighted k-out-of-n: F systems with degraded resistance against shocks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimal multiple replacement and maintenance scheduling in two-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Xian Zhao & Rong Li & Yu Fan & Qingan Qiu, 2022. "Reliability modeling for multi-state systems with a protective device considering multiple triggering mechanism," Journal of Risk and Reliability, , vol. 236(1), pages 173-193, February.
    10. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2023. "Reliability of a mixed δ-shock model with a random change point in shock magnitude distribution and an optimal replacement policy," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Optimal preventive replacement policy for homogeneous cold standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Wang, Jingjing & Zheng, Rui & Lin, Tianran, 2022. "Maintenance modeling for balanced systems subject to two competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2022. "Minimum cost replacement and maintenance scheduling in dual-dissimilar-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Ardakan, Mostafa Abouei & Amini, Hanieh & Juybari, Mohammad N., 2022. "Prescheduled switching time: A new strategy for systems with standby components," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    17. Wu, Congshan & Zhao, Xian & Wang, Siqi & Song, Yanbo, 2022. "Reliability analysis of consecutive-k-out-of-r-from-n subsystems: F balanced systems with load sharing," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Wang, Xiaoyue & Ning, Ru & Zhao, Xian & Wu, Congshan, 2023. "Reliability assessments for two types of balanced systems with multi-state protective devices," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Yu, Xiaoyun & Hu, Linmin & Ma, Mengrao, 2023. "Reliability measures of discrete time k-out-of-n: G retrial systems based on Bernoulli shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimization of cyclic preventive replacement in homogeneous warm-standby system with reusable elements exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:4:p:619-635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.