IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v236y2022i1p90-97.html
   My bibliography  Save this article

On the foundation and use of the de minimis principle in a risk analysis context

Author

Listed:
  • Terje Aven
  • Azadeh Seif

Abstract

‘De minimis risk’ is a basic concept and principle of risk analysis, which states that risks which are sufficiently small can be ignored. This principle is commonly used in practical risk analysis and related decision-making, but its rationale is debated. Recently, authors have argued that de minimis reasoning has no place in rational decision-making. The present paper provides a perspective on the foundation and use of this principle in a risk analysis context. The main aim of the paper is to gain new knowledge about the meaning and scope of the principle in view of contemporary risk science. We evaluate the extent to which different perspectives on risk can explain the disputes concerning the suitability of the principle. Current discussions of the principle have to a large extent been based on probabilistic-based frameworks, whereas the present study also addresses uncertainty-based risk perspectives. Examples are used to illustrate the discussion.

Suggested Citation

  • Terje Aven & Azadeh Seif, 2022. "On the foundation and use of the de minimis principle in a risk analysis context," Journal of Risk and Reliability, , vol. 236(1), pages 90-97, February.
  • Handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:90-97
    DOI: 10.1177/1748006X211028401
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211028401
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211028401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aven, Terje & Heide, Bjørnar, 2009. "Reliability and validity of risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1862-1868.
    2. Terje Aven, 2018. "Reflections on the Use of Conceptual Research in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2415-2423, November.
    3. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    4. Jeryl Mumpower, 1986. "An Analysis of the de minimis Strategy for Risk Management," Risk Analysis, John Wiley & Sons, vol. 6(4), pages 437-446, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilberto Montibeller & L. Alberto Franco & Ashley Carreras, 2020. "A Risk Analysis Framework for Prioritizing and Managing Biosecurity Threats," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2462-2477, November.
    2. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    3. Henrik Hassel & Alexander Cedergren, 2019. "Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1503-1519, July.
    4. Aven, Terje & Kristensen, Vidar, 2019. "How the distinction between general knowledge and specific knowledge can improve the foundation and practice of risk assessment and risk-informed decision-making," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Hamed Taherdoost, 2021. "A Review on Risk Management in Information Systems: Risk Policy, Control and Fraud Detection," Post-Print hal-03741848, HAL.
    6. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    7. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.
    8. Terje Aven, 2018. "Reflections on the Use of Conceptual Research in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2415-2423, November.
    9. Rosqvist, Tony, 2010. "On the validation of risk analysis—A commentary," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1261-1265.
    10. repec:arp:tjssrr:2019:p:69-75 is not listed on IDEAS
    11. Mussard, Stéphane & Pi Alperin, María Noel, 2021. "Accounting for risk factors on health outcomes: The case of Luxembourg," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1180-1197.
    12. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    13. Mangirdas Morkunas & Gintaras Cernius & Gintare Giriuniene, 2019. "Assessing Business Risks of Natural Gas Trading Companies: Evidence from GET Baltic," Energies, MDPI, vol. 12(14), pages 1-14, July.
    14. Scholz, Roland W. & Czichos, Reiner & Parycek, Peter & Lampoltshammer, Thomas J., 2020. "Organizational vulnerability of digital threats: A first validation of an assessment method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 627-643.
    15. Dr Jason Mwanza & Nothando Tshuma, 2023. "Mitigating Business Risk in Manufacturing SMEs: A nexus between informal and formal business risk management: A case of Bulawayo, Zimbabwe," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(1), pages 1107-1138, January.
    16. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    17. Li, Weijun & Sun, Qiqi & Zhang, Jiwang & Zhang, Laibin, 2024. "Quantitative risk assessment of industrial hot work using Adaptive Bow Tie and Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    19. Don Pagach & Monika Wieczorek-Kosmala, 2020. "The Challenges and Opportunities for ERM Post-COVID-19: Agendas for Future Research," JRFM, MDPI, vol. 13(12), pages 1-10, December.
    20. KeumJi Kim & SeongHwan Yoon, 2018. "Assessment of Building Damage Risk by Natural Disasters in South Korea Using Decision Tree Analysis," Sustainability, MDPI, vol. 10(4), pages 1-22, April.
    21. Tatiana Yu. Kudryavtseva & Angi E. Skhvediani & Maiia S. Leukhina & Alexandra O. Schneider, 2023. "A Fuzzy Model for Personnel Risk Analysis: Case of Russian-Finnish Export-Import Operations of Small and Medium Enterprises," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 22(3), pages 683-709.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:90-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.