IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v232y2018i6p725-737.html
   My bibliography  Save this article

Simulation-based uncertainty correlation modeling in reliability analysis

Author

Listed:
  • Faramarz Khosravi
  • Malte Müller
  • Michael Glaß
  • Jürgen Teich

Abstract

Due to destructive effects like temperature and radiation, today’s embedded systems have to deal with unreliable components. The intensity of these effects depends on uncertain aspects like environmental or usage conditions such that highly safety-critical systems are pessimistically designed for worst-case mission profiles. These uncertain aspects may affect several components simultaneously, implying correlation across uncertainties in their reliability. This paper enables a state-of-the-art uncertainty-aware reliability analysis technique to consider multiple arbitrary correlations; in other words, components’ reliability is affected by several uncertain aspects to different degrees. This analysis technique combines reliability models such as binary decision diagrams with a Monte Carlo simulation, and derives the uncertainty distribution of the system’s reliability with insights on the mean, quantile intervals, and so on. The proposed correlation method aims at generating correlated samples from the uncertainty distribution of components’ reliability such that the shape and statistical properties of each individual distribution remain unchanged. Experimental results confirm that the proposed correlation model enables the employed uncertainty-aware analysis to accurately calculate uncertainty at system level.

Suggested Citation

  • Faramarz Khosravi & Malte Müller & Michael Glaß & Jürgen Teich, 2018. "Simulation-based uncertainty correlation modeling in reliability analysis," Journal of Risk and Reliability, , vol. 232(6), pages 725-737, December.
  • Handle: RePEc:sae:risrel:v:232:y:2018:i:6:p:725-737
    DOI: 10.1177/1748006X18758720
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18758720
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18758720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicola Pedroni & Enrico Zio, 2013. "Uncertainty Analysis in Fault Tree Models with Dependent Basic Events," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1146-1173, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Klucka & Rudolf Gruenbichler & Jozef Ristvej, 2021. "Relations of COVID-19 and the Risk Management Framework," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    2. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    3. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.
    4. Chang, Qi & Zhou, Changcong & Wei, Pengfei & Zhang, Yishang & Yue, Zhufeng, 2021. "A new non-probabilistic time-dependent reliability model for mechanisms with interval uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Jiandong Zhang & Rongfang Yan & Yiying Zhang, 2023. "Reliability analysis of fail-safe systems with heterogeneous and dependent components subject to random shocks," Journal of Risk and Reliability, , vol. 237(6), pages 1073-1087, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:232:y:2018:i:6:p:725-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.