IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v225y2011i1p62-80.html
   My bibliography  Save this article

Genetic algorithm-aided reliability analysis

Author

Listed:
  • N Harnpornchai

Abstract

A hybrid procedure consisting of the combination of a genetic algorithm (GA) and reliability analysis (referred to as GA-aided reliability analysis) is described, discussed, and summarized. Two classes of GA, namely simple GAs and multimodal GAs, are introduced to solve a number of important problems in reliability analysis. The problems cover the determination of the point of maximum likelihood (PML) in the failure domain, the computation of failure probability using the GA-determined PML, and the determination of multiple design points. The Monte Carlo simulation-based (MCS-based) method using the GA-determined PML is specifically implemented in the so-called importance sampling around PML (ISPML). The application of the GA-based approach to several problems is then demonstrated via numerical examples. With the aid of GAs, an accurate reliability analysis can be achieved even if there is no information about either the geometry of the limit state surfaces or the total number of crucial likelihood points. In addition, GAs significantly improve the computational efficiency and increase the potential of rare event analysis under the condition of limited computational resources. The implementation of the GA-based approaches is straightforward due to their algorithmic simplicity.

Suggested Citation

  • N Harnpornchai, 2011. "Genetic algorithm-aided reliability analysis," Journal of Risk and Reliability, , vol. 225(1), pages 62-80, March.
  • Handle: RePEc:sae:risrel:v:225:y:2011:i:1:p:62-80
    DOI: 10.1177/1748006XJRR302
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006XJRR302
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006XJRR302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:225:y:2011:i:1:p:62-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.