IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v222y2008i2p207-218.html
   My bibliography  Save this article

Wear detection of rolling element bearings using multiple-sensing technologies and mixture-model-based clustering method

Author

Listed:
  • S L Chen
  • R J K Wood
  • L Wang
  • R Callan
  • H E G Powrie

Abstract

Online fault diagnostic technologies are fast emerging for detection of incipient faults on tribological components to avoid catastrophic failure. Vibration analysis has long been used to detect machine faults, but is sensitive to relatively severe conditions only. Electrostatic monitoring is a newly developed approach with the potential to detect precursor processes that indicate contact distress and wear. Recently, at the University of Southampton, both vibration and electrostatic sensors were implemented on a bearing testing rig to evaluate their effectiveness in detecting bearing faults. The results indicate that both types of sensor are sensitive to bearing deterioration shortly before complete failure. However, univariate plots of signals from both types of sensor only exhibit significant change when entering the severe wear stage. Therefore, multivariate techniques for detecting wear severity of components at different running stages need investigating. In this study, an unsupervised training method, called mixture-model-based clustering, that utilizes the expectation maximization (EM) algorithm is employed to develop further a wear detection technique. The choice and extraction of significant features from both vibration and electrostatic sensors are discussed as step one. The second step uses the clustering method to examine the behaviour of the extracted features during different running stages, and to quantify how good the sensors are at distinguishing wear severity. In the third step, a dynamic wear detection process is simulated. Clustering is applied to baseline data from a known healthy bearing and data from different wear stages to see if the data naturally group by wear condition. The result shows that the unsupervised clustering method is able not only to learn and detect wear conditions of the rolling element bearings with the developed statistical monitoring charts of occupation probability (OP) in the clusters and number of the trained clusters (NC), but also to obtain the advantage of detecting insignificant abnormalities that might be overlooked in the conventional plots.

Suggested Citation

  • S L Chen & R J K Wood & L Wang & R Callan & H E G Powrie, 2008. "Wear detection of rolling element bearings using multiple-sensing technologies and mixture-model-based clustering method," Journal of Risk and Reliability, , vol. 222(2), pages 207-218, June.
  • Handle: RePEc:sae:risrel:v:222:y:2008:i:2:p:207-218
    DOI: 10.1243/1748006XJRR89
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR89
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR89?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:222:y:2008:i:2:p:207-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.