IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v220y2006i1p45-53.html
   My bibliography  Save this article

Qualitative Analysis of Complex Modularized Fault Trees Using Binary Decision Diagrams

Author

Listed:
  • R Remenyte
  • J. D. Andrews

Abstract

Fault tree analysis is commonly used in the reliability assessment of industrial systems. When complex systems are studied conventional methods can become computationally intensive and require the use of approximations. This leads to inaccuracies in evaluating system reliability. To overcome such disadvantages, the binary decision diagram (BDD) method has been developed. This method improves accuracy and efficiency, because the exact solutions can be calculated without the requirement to calculate minimal cut sets as an intermediate phase. Minimal cut sets can be obtained if needed. BDDs are already proving to be of considerable use in system reliability analysis. However, the difficulty is with the conversion process of the fault tree to the BDD. The ordering of the basic events can have a crucial effect on the size of the final BDD, and previous research has failed to identify an optimum scheme for producing BDDs for all fault trees. This paper presents an extended strategy for the analysis of complex fault trees. The method utilizes simplification rules that are applied to the fault tree to reduce it to a series of smaller subtrees whose solution is equivalent to the original fault tree. The smaller subtree units are less sensitive to the basic event ordering during BDD conversion. BDDs are constructed for every subtree. Qualitative analysis is performed on the set of BDDs to obtain the minimal cut sets for the original top event. It is shown how to extract the minimal cut sets from complex and modular events in order to obtain the minimal cut sets of the original fault tree in terms of basic events.

Suggested Citation

  • R Remenyte & J. D. Andrews, 2006. "Qualitative Analysis of Complex Modularized Fault Trees Using Binary Decision Diagrams," Journal of Risk and Reliability, , vol. 220(1), pages 45-53, June.
  • Handle: RePEc:sae:risrel:v:220:y:2006:i:1:p:45-53
    DOI: 10.1243/1748006XJRR10
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR10
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR10?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remenyte-Prescott, R. & Andrews, J.D., 2008. "An enhanced component connection method for conversion of fault trees to binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1543-1550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:220:y:2006:i:1:p:45-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.