Author
Listed:
- Anu Mishra
(School of Public Health, Imperial College London, London, UK)
- Robyn L. McClelland
(Department of Biostatistics, University of Washington, Seattle, WA, USA)
- Lurdes Y. T. Inoue
(Department of Biostatistics, University of Washington, Seattle, WA, USA)
- Kathleen F. Kerr
(Department of Biostatistics, University of Washington, Seattle, WA, USA)
Abstract
Background An established risk model may demonstrate miscalibration, meaning predicted risks do not accurately capture event rates. In some instances, investigators can identify and address the cause of miscalibration. In other circumstances, it may be appropriate to recalibrate the risk model. Existing recalibration methods do not account for settings in which the risk score will be used for risk-based clinical decision making. Methods We propose 2 new methods for risk model recalibration when the intended purpose of the risk model is to prescribe an intervention to high-risk individuals. Our measure of risk model clinical utility is standardized net benefit. The first method is a weighted strategy that prioritizes good calibration at or around the critical risk threshold. The second method uses constrained optimization to produce a recalibrated risk model with maximum possible net benefit, thereby prioritizing good calibration around the critical risk threshold. We also propose a graphical tool for assessing the potential for recalibration to improve the net benefit of a risk model. We illustrate these methods by recalibrating the American College of Cardiology (ACC)–American Heart Association (AHA) atherosclerotic cardiovascular disease (ASCVD) risk score within the Multi-Ethnic Study of Atherosclerosis (MESA) cohort. Results New methods are implemented in the R package ClinicalUtilityRecal . Recalibrating the ACC-AHA-ASCVD risk score for a MESA subcohort results in higher estimated net benefit using the proposed methods compared with existing methods, with improved calibration in the most clinically impactful regions of risk. Conclusion The proposed methods target good calibration for critical risks and can improve the net benefit of a risk model. We recommend constrained optimization when the risk model net benefit is paramount. The weighted approach can be considered when good calibration over an interval of risks is important.
Suggested Citation
Anu Mishra & Robyn L. McClelland & Lurdes Y. T. Inoue & Kathleen F. Kerr, 2022.
"Recalibration Methods for Improved Clinical Utility of Risk Scores,"
Medical Decision Making, , vol. 42(4), pages 500-512, May.
Handle:
RePEc:sae:medema:v:42:y:2022:i:4:p:500-512
DOI: 10.1177/0272989X211044697
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:42:y:2022:i:4:p:500-512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.