IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v42y2022i4p450-460.html
   My bibliography  Save this article

Personalization of Medical Treatment Decisions: Simplifying Complex Models while Maintaining Patient Health Outcomes

Author

Listed:
  • Christopher Weyant

    (Department of Management Science and Engineering, Stanford University, Stanford, CA, USA)

  • Margaret L. Brandeau

    (Department of Management Science and Engineering, Stanford University, Stanford, CA, USA)

Abstract

Background Personalizing medical treatments based on patient-specific risks and preferences can improve patient health. However, models to support personalized treatment decisions are often complex and difficult to interpret, limiting their clinical application. Methods We present a new method, using machine learning to create meta-models, for simplifying complex models for personalizing medical treatment decisions. We consider simple interpretable models, interpretable ensemble models, and noninterpretable ensemble models. We use variable selection with a penalty for patient-specific risks and/or preferences that are difficult, risky, or costly to obtain. We interpret the meta-models to the extent permitted by their model architectures. We illustrate our method by applying it to simplify a previously developed model for personalized selection of antipsychotic drugs for patients with schizophrenia. Results The best simplified interpretable, interpretable ensemble, and noninterpretable ensemble models contained at most half the number of patient-specific risks and preferences compared with the original model. The simplified models achieved 60.5% (95% credible interval [crI]: 55.2–65.4), 60.8% (95% crI: 55.5–65.7), and 83.8% (95% crI: 80.8–86.6), respectively, of the net health benefit of the original model (quality-adjusted life-years gained). Important variables in all models were similar and made intuitive sense. Computation time for the meta-models was orders of magnitude less than for the original model. Limitations The simplified models share the limitations of the original model (e.g., potential biases). Conclusions Our meta-modeling method is disease- and model- agnostic and can be used to simplify complex models for personalization, allowing for variable selection in addition to improved model interpretability and computational performance. Simplified models may be more likely to be adopted in clinical settings and can help improve equity in patient outcomes.

Suggested Citation

  • Christopher Weyant & Margaret L. Brandeau, 2022. "Personalization of Medical Treatment Decisions: Simplifying Complex Models while Maintaining Patient Health Outcomes," Medical Decision Making, , vol. 42(4), pages 450-460, May.
  • Handle: RePEc:sae:medema:v:42:y:2022:i:4:p:450-460
    DOI: 10.1177/0272989X211037921
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X211037921
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X211037921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:42:y:2022:i:4:p:450-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.