Author
Listed:
- Christopher R. Wolfe
(Department of Psychology, Miami University, Oxford, OH, USA)
- Mitchell Dandignac
(Department of Psychology, Miami University, Oxford, OH, USA)
- Rachel Sullivan
(Department of Psychology, Miami University, Oxford, OH, USA)
- Tatum Moleski
(Department of Psychology, Miami University, Oxford, OH, USA)
- Valerie F. Reyna
(Department of Human Development, Cornell University, Ithaca, NY, USA)
Abstract
Background. It is difficult to write about cancer for laypeople such that everyone understands. One common approach to readability is the Flesch-Kincaid Grade Level (FKGL). However, FKGL has been shown to be less effective than emerging discourse technologies in predicting readability. Objective. Guided by fuzzy-trace theory, we used the discourse technology Coh-Metrix to create a Gist Inference Score (GIS) and applied it to texts from the National Cancer Institute website written for patients and health care providers. We tested the prediction that patient cancer texts with higher GIS scores are likely to be better understood than others. Design. In study 1, all 244 cancer texts were systematically subjected to an automated Coh-Metrix analysis. In study 2, 9 of those patient texts (3 each at high, medium, and low GIS) were systematically converted to fill-the-blanks (Cloze) tests in which readers had to supply the missing words. Participants (162) received 3 texts, 1 at each GIS level. Measures. GIS was measured as the mean of 7 Coh-Metrix variables, and comprehension was measured through a Cloze procedure. Results. Although texts for patients scored lower on FKGL than those for providers, they also scored lower on GIS, suggesting difficulties for readers. In study 2, participants scored higher on the Cloze task for high GIS texts than for low- or medium-GIS texts. High-GIS texts seemed to better lend themselves to correct responses using different words. Limitations. GIS is limited to text and cannot assess inferences made from images. The systematic Cloze procedure worked well in aggregate but does not make fine-grained distinctions. Conclusions. GIS appears to be a useful, theoretically motivated supplement to FKGL for use in research and clinical practice.
Suggested Citation
Christopher R. Wolfe & Mitchell Dandignac & Rachel Sullivan & Tatum Moleski & Valerie F. Reyna, 2019.
"Automatic Evaluation of Cancer Treatment Texts for Gist Inferences and Comprehension,"
Medical Decision Making, , vol. 39(8), pages 939-949, November.
Handle:
RePEc:sae:medema:v:39:y:2019:i:8:p:939-949
DOI: 10.1177/0272989X19874316
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:39:y:2019:i:8:p:939-949. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.