IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v39y2019i7p867-878.html
   My bibliography  Save this article

Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function

Author

Listed:
  • Benjamin Kearns

    (The University of Sheffield, Sheffield, UK)

  • Matt D. Stevenson

    (The University of Sheffield, Sheffield, UK)

  • Kostas Triantafyllopoulos

    (The University of Sheffield, Sheffield, UK)

  • Andrea Manca

    (The University of Sheffield, Sheffield, UK
    The University of York, York, UK)

Abstract

Background. Parametric modeling of survival data is important, and reimbursement decisions may depend on the selected distribution. Accurate predictions require sufficiently flexible models to describe adequately the temporal evolution of the hazard function. A rich class of models is available among the framework of generalized linear models (GLMs) and its extensions, but these models are rarely applied to survival data. This article describes the theoretical properties of these more flexible models and compares their performance to standard survival models in a reproducible case study. Methods. We describe how survival data may be analyzed with GLMs and their extensions: fractional polynomials, spline models, generalized additive models, generalized linear mixed (frailty) models, and dynamic survival models. For each, we provide a comparison of the strengths and limitations of these approaches. For the case study, we compare within-sample fit, the plausibility of extrapolations, and extrapolation performance based on data splitting. Results. Viewing standard survival models as GLMs shows that many impose a restrictive assumption of linearity. For the case study, GLMs provided better within-sample fit and more plausible extrapolations. However, they did not improve extrapolation performance. We also provide guidance to aid in choosing between the different approaches based on GLMs and their extensions. Conclusions. The use of GLMs for parametric survival analysis can outperform standard parametric survival models, although the improvements were modest in our case study. This approach is currently seldom used. We provide guidance on both implementing these models and choosing between them. The reproducible case study will help to increase uptake of these models.

Suggested Citation

  • Benjamin Kearns & Matt D. Stevenson & Kostas Triantafyllopoulos & Andrea Manca, 2019. "Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function," Medical Decision Making, , vol. 39(7), pages 867-878, October.
  • Handle: RePEc:sae:medema:v:39:y:2019:i:7:p:867-878
    DOI: 10.1177/0272989X19873661
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X19873661
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X19873661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kostas Triantafyllopoulos, 2009. "Inference of Dynamic Generalized Linear Models: On‐Line Computation and Appraisal," International Statistical Review, International Statistical Institute, vol. 77(3), pages 430-450, December.
    2. Patrick Royston & Paul C. Lambert, 2011. "Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model," Stata Press books, StataCorp LP, number fpsaus, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arantzazu Arrospide & Oliver Ibarrondo & Rubén Blasco-Aguado & Igor Larrañaga & Fernando Alarid-Escudero & Javier Mar, 2024. "Using Age-Specific Rates for Parametric Survival Function Estimation in Simulation Models," Medical Decision Making, , vol. 44(4), pages 359-364, May.
    2. Adeniyi Francis Fagbamigbe & Emma Norrman & Christina Bergh & Ulla-Britt Wennerholm & Max Petzold, 2021. "Comparison of the performances of survival analysis regression models for analysis of conception modes and risk of type-1 diabetes among 1985–2015 Swedish birth cohort," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
    2. Patrick Royston, 2012. "Tools to simulate realistic censored survival-time distributions," Stata Journal, StataCorp LP, vol. 12(4), pages 639-654, December.
    3. Noori Akhtar-Danesh, 2015. "A Comparison of Modeling Scales in Flexible Parametric Models," 2015 Stata Conference 15, Stata Users Group.
    4. Enoch Yi-Tung Chen & Yuliya Leontyeva & Chia-Ni Lin & Jung-Der Wang & Mark S. Clements & Paul W. Dickman, 2024. "Comparing Survival Extrapolation within All-Cause and Relative Survival Frameworks by Standard Parametric Models and Flexible Parametric Spline Models Using the Swedish Cancer Registry," Medical Decision Making, , vol. 44(3), pages 269-282, April.
    5. Talamas Marcos, Miguel Ángel, 2023. "Surviving Competition: Neighborhood Shops vs. Convenience Chains," IDB Publications (Working Papers) 13018, Inter-American Development Bank.
    6. Iversen, Tor & Ching-to , Albert Ma, 2020. "Technology Adoption in Primary Health Care," HERO Online Working Paper Series 2020:4, University of Oslo, Health Economics Research Programme.
    7. Herrera Dappe,Matias & Melecky,Martin & Turkgulu,Burak, 2022. "Fiscal Risks from Early Termination of Public-Private Partnerships in Infrastructure," Policy Research Working Paper Series 9972, The World Bank.
    8. Michael J. Crowther & Paul C. Lambert, 2012. "Simulating complex survival data," Stata Journal, StataCorp LP, vol. 12(4), pages 674-687, December.
    9. James P Cross & AustÄ— VaznonytÄ—, 2020. "Can we do what we say we will do? Issue salience, government effectiveness, and the legislative efficiency of Council Presidencies," European Union Politics, , vol. 21(4), pages 657-679, December.
    10. Martin Connock & Peter Auguste & Xavier Armoiry, 2021. "A comparison of published time invariant Markov models with Partitioned Survival models for cost effectiveness estimation; three case studies of treatments for glioblastoma multiforme," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(1), pages 89-100, February.
    11. Anne J Rerimoi & Momodou Jasseh & Schadrac C Agbla & Georges Reniers & Anna Roca & Ian M Timæus, 2019. "Under-five mortality in The Gambia: Comparison of the results of the first demographic and health survey with those from existing inquiries," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
    12. Paul Lambert, 2024. "Recent developments in the fitting and assessment of flexible parametric survival models," German Stata Conference 2024 01, Stata Users Group.
    13. Paul Lambert, 2018. "Standardized survival curves and related measures from flexible survival parametric models," London Stata Conference 2018 14, Stata Users Group.
    14. Patricia Guyot & Anthony E. Ades & Matthew Beasley & Béranger Lueza & Jean-Pierre Pignon & Nicky J. Welton, 2017. "Extrapolation of Survival Curves from Cancer Trials Using External Information," Medical Decision Making, , vol. 37(4), pages 353-366, May.
    15. Eddie Gibson & Ian Koblbauer & Najida Begum & George Dranitsaris & Danny Liew & Phil McEwan & Amir Abbas Tahami Monfared & Yong Yuan & Ariadna Juarez-Garcia & David Tyas & Michael Lees, 2017. "Modelling the Survival Outcomes of Immuno-Oncology Drugs in Economic Evaluations: A Systematic Approach to Data Analysis and Extrapolation," PharmacoEconomics, Springer, vol. 35(12), pages 1257-1270, December.
    16. Zuzana Špacírová & Stephen Kaptoge & Leticia García-Mochón & Miguel Rodríguez Barranco & María José Sánchez Pérez & Nicola P. Bondonno & Anne Tjønneland & Elisabete Weiderpass & Sara Grioni & Jaime Es, 2023. "The cost-effectiveness of a uniform versus age-based threshold for one-off screening for prevention of cardiovascular disease," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(7), pages 1033-1045, September.
    17. H. Joseph Newton & Nicholas J. Cox, 2016. "The Stata Journal Editors' Prize 2016: Patrick Royston," Stata Journal, StataCorp LP, vol. 16(4), pages 815-825, December.
    18. Ghislain B D Aihounton & Arne Henningsen, 2021. "Units of measurement and the inverse hyperbolic sine transformation," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 334-351.
    19. Xudong Du & Mier Li & Ping Zhu & Ju Wang & Lisha Hou & Jijie Li & Hongdao Meng & Muke Zhou & Cairong Zhu, 2018. "Comparison of the flexible parametric survival model and Cox model in estimating Markov transition probabilities using real-world data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-13, August.
    20. Nicola Orsini, 2013. "Review of Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model by Patrick Royston and Paul C. Lambert," Stata Journal, StataCorp LP, vol. 13(1), pages 212-216, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:39:y:2019:i:7:p:867-878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.