Author
Listed:
- Jarrod E. Dalton
- Neal V. Dawson
- Daniel I. Sessler
- Jesse D. Schold
- Thomas E. Love
- Michael W. Kattan
Abstract
Randomized trials provide strong evidence regarding efficacy of interventions but are limited in their capacity to address potential heterogeneity in effectiveness within broad clinical populations. For example, a treatment that on average is superior may be distinctly worse in certain patients. We propose a technique for using large electronic health registries to develop and validate decision models that measure—for distinct combinations of covariate values—the difference in predicted outcomes among 2 alternative treatments. We demonstrate the methodology in a prototype analysis of in-hospital mortality under alternative revascularization treatments. First, we developed prediction models for a binary outcome of interest for each treatment. Decision criteria were then defined based on the treatment-specific model predictions. Patients were then classified as receiving concordant or discordant care (in relation to the model recommendation), and the association between discordance and outcomes was evaluated. We then present alternative decision criteria and validation methodologies, as well as sensitivity analyses that investigate 1) the imbalance between treatments on observed covariates and 2) the aggregate impact of unobserved covariates. Our methodology supplements population-average clinical trial results by modeling heterogeneity in outcomes according to specific covariate values. It thus allows for assessment of current practice, from which cogent hypotheses for improved care can be derived. Newly emerging large population registries will allow for accurate predictions of outcome risk under competing treatments, as complex functions of predictor variables. Whether or not the models might be used to inform decision making depends on the extent to which important predictors are available. Further work is needed to understand the strengths and limitations of this approach, particularly in relation to those based on randomized trials.
Suggested Citation
Jarrod E. Dalton & Neal V. Dawson & Daniel I. Sessler & Jesse D. Schold & Thomas E. Love & Michael W. Kattan, 2016.
"Empirical Treatment Effectiveness Models for Binary Outcomes,"
Medical Decision Making, , vol. 36(1), pages 101-114, January.
Handle:
RePEc:sae:medema:v:36:y:2016:i:1:p:101-114
DOI: 10.1177/0272989X15578835
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:36:y:2016:i:1:p:101-114. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.