Author
Listed:
- Nikolai Mühlberger
- Christina Kurzthaler
- Rowan Iskandar
- Murray D. Krahn
- Karen E. Bremner
- Willi Oberaigner
- Helmut Klocker
- Wolfgang Horninger
- Annette Conrads-Frank
- Gaby Sroczynski
- Uwe Siebert
Abstract
Background . The ONCOTYROL Prostate Cancer Outcome and Policy (PCOP) model is a state-transition microsimulation model evaluating the benefits and harms of prostate cancer (PCa) screening. The natural history and detection component of the original model was based on the 2003 version of the Erasmus MIcrosimulation SCreening ANalysis (MISCAN) model, which was not calibrated to prevalence data. Compared with data from autopsy studies, prevalence of latent PCa assumed by the original model is low, which may bias the model toward screening. Our objective was to recalibrate the original model to match prevalence data from autopsy studies as well and compare benefit-harm predictions of the 2 model versions differing in prevalence. Methods . For recalibration, we reprogrammed the natural history and detection component of the PCOP model as a deterministic Markov state-transition cohort model in the statistical software package R. All parameters were implemented as variables or time-dependent functions and calibrated simultaneously in a single run. Observed data used as calibration targets included data from autopsy studies, cancer registries, and the European Randomized Study of Screening for Prostate Cancer. Compared models were identical except for calibrated parameters. Results . We calibrated 46 parameters. Prevalence from autopsy studies could not be fitted using the original parameter set. Additional parameters, allowing for interruption of disease progression and age-dependent screening sensitivities, were needed. Recalibration to higher prevalence demonstrated a considerable increase of overdiagnosis and decline of screening sensitivity, which significantly worsened the benefit-harm balance of screening. Conclusions . Our calibration suggests that not all cancers are at risk of progression, and screening sensitivity may be lower at older ages. PCa screening models that use calibration to simulate disease progression in the unobservable latent phase are highly sensitive to prevalence assumptions.
Suggested Citation
Nikolai Mühlberger & Christina Kurzthaler & Rowan Iskandar & Murray D. Krahn & Karen E. Bremner & Willi Oberaigner & Helmut Klocker & Wolfgang Horninger & Annette Conrads-Frank & Gaby Sroczynski & Uw, 2015.
"The ONCOTYROL Prostate Cancer Outcome and Policy Model,"
Medical Decision Making, , vol. 35(6), pages 758-772, August.
Handle:
RePEc:sae:medema:v:35:y:2015:i:6:p:758-772
DOI: 10.1177/0272989X15585114
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:35:y:2015:i:6:p:758-772. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.