IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v35y2015i6p714-725.html
   My bibliography  Save this article

Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting

Author

Listed:
  • Asli Uyar
  • Ayse Bener
  • H. Nadir Ciray

Abstract

Background. Multiple embryo transfers in in vitro fertilization (IVF) treatment increase the number of successful pregnancies while elevating the risk of multiple gestations. IVF-associated multiple pregnancies exhibit significant financial, social, and medical implications. Clinicians need to decide the number of embryos to be transferred considering the tradeoff between successful outcomes and multiple pregnancies. Objective. To predict implantation outcome of individual embryos in an IVF cycle with the aim of providing decision support on the number of embryos transferred. Design. Retrospective cohort study. Data Source. Electronic health records of one of the largest IVF clinics in Turkey. The study data set included 2453 embryos transferred at day 2 or day 3 after intracytoplasmic sperm injection (ICSI). Each embryo was represented with 18 clinical features and a class label, +1 or -1, indicating positive and negative implantation outcomes, respectively. Methods. For each classifier tested, a model was developed using two-thirds of the data set, and prediction performance was evaluated on the remaining one-third of the samples using receiver operating characteristic (ROC) analysis. The training-testing procedure was repeated 10 times on randomly split (two-thirds to one-third) data. The relative predictive values of clinical input characteristics were assessed using information gain feature weighting and forward feature selection methods. Results. The naïve Bayes model provided 80.4% accuracy, 63.7% sensitivity, and 17.6% false alarm rate in embryo-based implantation prediction. Multiple embryo implantations were predicted at a 63.8% sensitivity level. Predictions using the proposed model resulted in higher accuracy compared with expert judgment alone (on average, 75.7% and 60.1%, respectively). Conclusions. A machine learning–based decision support system would be useful in improving the success rates of IVF treatment.

Suggested Citation

  • Asli Uyar & Ayse Bener & H. Nadir Ciray, 2015. "Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting," Medical Decision Making, , vol. 35(6), pages 714-725, August.
  • Handle: RePEc:sae:medema:v:35:y:2015:i:6:p:714-725
    DOI: 10.1177/0272989X14535984
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X14535984
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X14535984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:35:y:2015:i:6:p:714-725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.