Author
Listed:
- Siddhartha R. Dalal
- Paul G. Shekelle
- Susanne Hempel
- Sydne J. Newberry
- Aneesa Motala
- Kanaka D. Shetty
Abstract
Background. Comparative effectiveness and systematic reviews require frequent and time-consuming updating. Results of earlier screening should be useful in reducing the effort needed to screen relevant articles. Methods. We collected 16,707 PubMed citation classification decisions from 2 comparative effectiveness reviews: interventions to prevent fractures in low bone density (LBD) and off-label uses of atypical antipsychotic drugs (AAP). We used previously written search strategies to guide extraction of a limited number of explanatory variables pertaining to the intervention, outcome, and study design. We empirically derived statistical models (based on a sparse generalized linear model with convex penalties [GLMnet] and a gradient boosting machine [GBM]) that predicted article relevance. We evaluated model sensitivity, positive predictive value (PPV), and screening workload reductions using 11,003 PubMed citations retrieved for the LBD and AAP updates. Results. GLMnet-based models performed slightly better than GBM-based models. When attempting to maximize sensitivity for all relevant articles, GLMnet-based models achieved high sensitivities (0.99 and 1.0 for AAP and LBD, respectively) while reducing projected screening by 55.4% and 63.2%. The GLMnet-based model yielded sensitivities of 0.921 and 0.905 and PPVs of 0.185 and 0.102 when predicting articles relevant to the AAP and LBD efficacy/effectiveness analyses, respectively (using a threshold of P ≥ 0.02). GLMnet performed better when identifying adverse effect relevant articles for the AAP review (sensitivity = 0.981) than for the LBD review (0.685). The system currently requires MEDLINE-indexed articles. Conclusions. We evaluated statistical classifiers that used previous classification decisions and explanatory variables derived from MEDLINE indexing terms to predict inclusion decisions. This pilot system reduced workload associated with screening 2 simulated comparative effectiveness review updates by more than 50% with minimal loss of relevant articles.
Suggested Citation
Siddhartha R. Dalal & Paul G. Shekelle & Susanne Hempel & Sydne J. Newberry & Aneesa Motala & Kanaka D. Shetty, 2013.
"A Pilot Study Using Machine Learning and Domain Knowledge to Facilitate Comparative Effectiveness Review Updating,"
Medical Decision Making, , vol. 33(3), pages 343-355, April.
Handle:
RePEc:sae:medema:v:33:y:2013:i:3:p:343-355
DOI: 10.1177/0272989X12457243
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:33:y:2013:i:3:p:343-355. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.